a) To verify the limit, we need to show that for any ϵ > 0 \epsilon > 0 ϵ > 0 , there exists a δ > 0 \delta > 0 δ > 0 such that if 0 < ∣ x − b + a a ∣ < δ 0 < |x - \frac{b+a}{a}| < \delta 0 < ∣ x − a b + a ∣ < δ , then ∣ f ( x ) − a ∣ < ϵ |f(x) - \sqrt{a}| < \epsilon ∣ f ( x ) − a ∣ < ϵ .
We have ∣ f ( x ) − a ∣ = ∣ a x − b − a ∣ |f(x) - \sqrt{a}| = |\sqrt{ax - b} - \sqrt{a}| ∣ f ( x ) − a ∣ = ∣ a x − b − a ∣ . We want to make this less than ϵ \epsilon ϵ . Multiplying and dividing by the conjugate, we get:
∣ a x − b − a ∣ = ∣ ( a x − b − a ) ( a x − b + a ) a x − b + a ∣ = ∣ a x − b − a a x − b + a ∣ = ∣ a ( x − b + a a ) a x − b + a ∣ |\sqrt{ax - b} - \sqrt{a}| = |\frac{(\sqrt{ax - b} - \sqrt{a})(\sqrt{ax - b} + \sqrt{a})}{\sqrt{ax - b} + \sqrt{a}}| = |\frac{ax - b - a}{\sqrt{ax - b} + \sqrt{a}}| = |\frac{a(x - \frac{b+a}{a})}{\sqrt{ax - b} + \sqrt{a}}| ∣ a x − b − a ∣ = ∣ a x − b + a ( a x − b − a ) ( a x − b + a ) ∣ = ∣ a x − b + a a x − b − a ∣ = ∣ a x − b + a a ( x − a b + a ) ∣ So, ∣ f ( x ) − a ∣ = a ∣ x − b + a a ∣ a x − b + a |f(x) - \sqrt{a}| = \frac{a|x - \frac{b+a}{a}|}{\sqrt{ax - b} + \sqrt{a}} ∣ f ( x ) − a ∣ = a x − b + a a ∣ x − a b + a ∣ .
Since x → b + a a x \to \frac{b+a}{a} x → a b + a , we can assume x > b a x > \frac{b}{a} x > a b , so a x − b > 0 ax - b > 0 a x − b > 0 . Also, a x − b ax - b a x − b is close to a a a when x x x is close to b + a a \frac{b+a}{a} a b + a , so a x − b \sqrt{ax - b} a x − b is close to a \sqrt{a} a . Thus a x − b + a \sqrt{ax - b} + \sqrt{a} a x − b + a is close to 2 a 2\sqrt{a} 2 a . ∣ f ( x ) − a ∣ = a ∣ x − b + a a ∣ a x − b + a < a ∣ x − b + a a ∣ a = a ∣ x − b + a a ∣ |f(x) - \sqrt{a}| = \frac{a|x - \frac{b+a}{a}|}{\sqrt{ax - b} + \sqrt{a}} < \frac{a|x - \frac{b+a}{a}|}{\sqrt{a}} = \sqrt{a} |x - \frac{b+a}{a}| ∣ f ( x ) − a ∣ = a x − b + a a ∣ x − a b + a ∣ < a a ∣ x − a b + a ∣ = a ∣ x − a b + a ∣ . So, if we choose δ = ϵ a \delta = \frac{\epsilon}{\sqrt{a}} δ = a ϵ , then whenever ∣ x − b + a a ∣ < δ |x - \frac{b+a}{a}| < \delta ∣ x − a b + a ∣ < δ , we have ∣ f ( x ) − a ∣ < a δ = a ϵ a = ϵ |f(x) - \sqrt{a}| < \sqrt{a} \delta = \sqrt{a} \frac{\epsilon}{\sqrt{a}} = \epsilon ∣ f ( x ) − a ∣ < a δ = a a ϵ = ϵ . Thus, we have shown that lim x → b + a a f ( x ) = a \lim_{x \to \frac{b+a}{a}} f(x) = \sqrt{a} lim x → a b + a f ( x ) = a .
b) We are given sinh − 1 x + cosh − 1 ( x + 2 ) = 0 \sinh^{-1} x + \cosh^{-1} (x+2) = 0 sinh − 1 x + cosh − 1 ( x + 2 ) = 0 . So, sinh − 1 x = − cosh − 1 ( x + 2 ) \sinh^{-1} x = - \cosh^{-1} (x+2) sinh − 1 x = − cosh − 1 ( x + 2 ) . We know that sinh − 1 x = ln ( x + x 2 + 1 ) \sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}) sinh − 1 x = ln ( x + x 2 + 1 ) and cosh − 1 y = ln ( y + y 2 − 1 ) \cosh^{-1} y = \ln(y + \sqrt{y^2 - 1}) cosh − 1 y = ln ( y + y 2 − 1 ) for y ≥ 1 y \geq 1 y ≥ 1 .
Thus, ln ( x + x 2 + 1 ) = − ln ( x + 2 + ( x + 2 ) 2 − 1 ) = ln ( 1 x + 2 + ( x + 2 ) 2 − 1 ) \ln(x + \sqrt{x^2 + 1}) = - \ln(x+2 + \sqrt{(x+2)^2 - 1}) = \ln(\frac{1}{x+2 + \sqrt{(x+2)^2 - 1}}) ln ( x + x 2 + 1 ) = − ln ( x + 2 + ( x + 2 ) 2 − 1 ) = ln ( x + 2 + ( x + 2 ) 2 − 1 1 ) . So, x + x 2 + 1 = 1 x + 2 + ( x + 2 ) 2 − 1 x + \sqrt{x^2 + 1} = \frac{1}{x+2 + \sqrt{(x+2)^2 - 1}} x + x 2 + 1 = x + 2 + ( x + 2 ) 2 − 1 1 . ( x + x 2 + 1 ) ( x + 2 + x 2 + 4 x + 3 ) = 1 (x + \sqrt{x^2 + 1}) (x+2 + \sqrt{x^2 + 4x + 3}) = 1 ( x + x 2 + 1 ) ( x + 2 + x 2 + 4 x + 3 ) = 1 .
Also, since cosh − 1 ( x + 2 ) \cosh^{-1}(x+2) cosh − 1 ( x + 2 ) is defined, we require x + 2 ≥ 1 x+2 \geq 1 x + 2 ≥ 1 , which means x ≥ − 1 x \geq -1 x ≥ − 1 .
sinh − 1 x = − cosh − 1 ( x + 2 ) \sinh^{-1} x = - \cosh^{-1} (x+2) sinh − 1 x = − cosh − 1 ( x + 2 ) Taking sinh on both sides, x = sinh ( − cosh − 1 ( x + 2 ) ) = − sinh ( cosh − 1 ( x + 2 ) ) x = \sinh(-\cosh^{-1}(x+2)) = - \sinh(\cosh^{-1}(x+2)) x = sinh ( − cosh − 1 ( x + 2 )) = − sinh ( cosh − 1 ( x + 2 )) . We know that cosh 2 y − sinh 2 y = 1 \cosh^2 y - \sinh^2 y = 1 cosh 2 y − sinh 2 y = 1 , so sinh y = ± cosh 2 y − 1 \sinh y = \pm \sqrt{\cosh^2 y - 1} sinh y = ± cosh 2 y − 1 . Thus, x = − cosh 2 ( cosh − 1 ( x + 2 ) ) − 1 = − ( x + 2 ) 2 − 1 = − x 2 + 4 x + 3 x = - \sqrt{\cosh^2(\cosh^{-1}(x+2)) - 1} = - \sqrt{(x+2)^2 - 1} = - \sqrt{x^2 + 4x + 3} x = − cosh 2 ( cosh − 1 ( x + 2 )) − 1 = − ( x + 2 ) 2 − 1 = − x 2 + 4 x + 3 . Squaring both sides gives x 2 = x 2 + 4 x + 3 x^2 = x^2 + 4x + 3 x 2 = x 2 + 4 x + 3 , so 4 x + 3 = 0 4x + 3 = 0 4 x + 3 = 0 , and x = − 3 4 x = -\frac{3}{4} x = − 4 3 . Now, we need to check if this value of x x x works. Since x ≥ − 1 x \geq -1 x ≥ − 1 , x = − 3 / 4 x = -3/4 x = − 3/4 is a candidate. When x = − 3 4 x = -\frac{3}{4} x = − 4 3 , the original equation becomes: sinh − 1 ( − 3 4 ) + cosh − 1 ( − 3 4 + 2 ) = sinh − 1 ( − 3 4 ) + cosh − 1 ( 5 4 ) \sinh^{-1}(-\frac{3}{4}) + \cosh^{-1}(-\frac{3}{4} + 2) = \sinh^{-1}(-\frac{3}{4}) + \cosh^{-1}(\frac{5}{4}) sinh − 1 ( − 4 3 ) + cosh − 1 ( − 4 3 + 2 ) = sinh − 1 ( − 4 3 ) + cosh − 1 ( 4 5 ) . sinh − 1 ( − 3 4 ) = ln ( − 3 4 + 9 16 + 1 ) = ln ( − 3 4 + 5 4 ) = ln ( 2 4 ) = ln ( 1 2 ) = − ln 2 \sinh^{-1}(-\frac{3}{4}) = \ln(-\frac{3}{4} + \sqrt{\frac{9}{16} + 1}) = \ln(-\frac{3}{4} + \frac{5}{4}) = \ln(\frac{2}{4}) = \ln(\frac{1}{2}) = - \ln 2 sinh − 1 ( − 4 3 ) = ln ( − 4 3 + 16 9 + 1 ) = ln ( − 4 3 + 4 5 ) = ln ( 4 2 ) = ln ( 2 1 ) = − ln 2 . cosh − 1 ( 5 4 ) = ln ( 5 4 + 25 16 − 1 ) = ln ( 5 4 + 3 4 ) = ln ( 8 4 ) = ln 2 \cosh^{-1}(\frac{5}{4}) = \ln(\frac{5}{4} + \sqrt{\frac{25}{16} - 1}) = \ln(\frac{5}{4} + \frac{3}{4}) = \ln(\frac{8}{4}) = \ln 2 cosh − 1 ( 4 5 ) = ln ( 4 5 + 16 25 − 1 ) = ln ( 4 5 + 4 3 ) = ln ( 4 8 ) = ln 2 . So, sinh − 1 ( − 3 4 ) + cosh − 1 ( 5 4 ) = − ln 2 + ln 2 = 0 \sinh^{-1}(-\frac{3}{4}) + \cosh^{-1}(\frac{5}{4}) = - \ln 2 + \ln 2 = 0 sinh − 1 ( − 4 3 ) + cosh − 1 ( 4 5 ) = − ln 2 + ln 2 = 0 .