a) We are given the function $f(x) = \sqrt{ax - b}$, where $a, b \in \mathbb{R}$ and $a > 0$. We need to verify that $\lim_{x \to \frac{b+a}{a}} f(x) = \sqrt{a}$ using the definition of a limit. b) We need to find the value of $x \in \mathbb{R}$ for which $\sinh^{-1} x + \cosh^{-1} (x+2) = 0$.

AnalysisLimitsInverse Hyperbolic FunctionsCalculus
2025/4/11

1. Problem Description

a) We are given the function f(x)=axbf(x) = \sqrt{ax - b}, where a,bRa, b \in \mathbb{R} and a>0a > 0. We need to verify that limxb+aaf(x)=a\lim_{x \to \frac{b+a}{a}} f(x) = \sqrt{a} using the definition of a limit.
b) We need to find the value of xRx \in \mathbb{R} for which sinh1x+cosh1(x+2)=0\sinh^{-1} x + \cosh^{-1} (x+2) = 0.

2. Solution Steps

a) To verify the limit, we need to show that for any ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that if 0<xb+aa<δ0 < |x - \frac{b+a}{a}| < \delta, then f(x)a<ϵ|f(x) - \sqrt{a}| < \epsilon.
We have f(x)a=axba|f(x) - \sqrt{a}| = |\sqrt{ax - b} - \sqrt{a}|. We want to make this less than ϵ\epsilon.
Multiplying and dividing by the conjugate, we get:
axba=(axba)(axb+a)axb+a=axbaaxb+a=a(xb+aa)axb+a|\sqrt{ax - b} - \sqrt{a}| = |\frac{(\sqrt{ax - b} - \sqrt{a})(\sqrt{ax - b} + \sqrt{a})}{\sqrt{ax - b} + \sqrt{a}}| = |\frac{ax - b - a}{\sqrt{ax - b} + \sqrt{a}}| = |\frac{a(x - \frac{b+a}{a})}{\sqrt{ax - b} + \sqrt{a}}|
So, f(x)a=axb+aaaxb+a|f(x) - \sqrt{a}| = \frac{a|x - \frac{b+a}{a}|}{\sqrt{ax - b} + \sqrt{a}}.
Since xb+aax \to \frac{b+a}{a}, we can assume x>bax > \frac{b}{a}, so axb>0ax - b > 0.
Also, axbax - b is close to aa when xx is close to b+aa\frac{b+a}{a}, so axb\sqrt{ax - b} is close to a\sqrt{a}. Thus axb+a\sqrt{ax - b} + \sqrt{a} is close to 2a2\sqrt{a}.
f(x)a=axb+aaaxb+a<axb+aaa=axb+aa|f(x) - \sqrt{a}| = \frac{a|x - \frac{b+a}{a}|}{\sqrt{ax - b} + \sqrt{a}} < \frac{a|x - \frac{b+a}{a}|}{\sqrt{a}} = \sqrt{a} |x - \frac{b+a}{a}|.
So, if we choose δ=ϵa\delta = \frac{\epsilon}{\sqrt{a}}, then whenever xb+aa<δ|x - \frac{b+a}{a}| < \delta, we have f(x)a<aδ=aϵa=ϵ|f(x) - \sqrt{a}| < \sqrt{a} \delta = \sqrt{a} \frac{\epsilon}{\sqrt{a}} = \epsilon.
Thus, we have shown that limxb+aaf(x)=a\lim_{x \to \frac{b+a}{a}} f(x) = \sqrt{a}.
b) We are given sinh1x+cosh1(x+2)=0\sinh^{-1} x + \cosh^{-1} (x+2) = 0.
So, sinh1x=cosh1(x+2)\sinh^{-1} x = - \cosh^{-1} (x+2).
We know that sinh1x=ln(x+x2+1)\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}) and cosh1y=ln(y+y21)\cosh^{-1} y = \ln(y + \sqrt{y^2 - 1}) for y1y \geq 1.
Thus, ln(x+x2+1)=ln(x+2+(x+2)21)=ln(1x+2+(x+2)21)\ln(x + \sqrt{x^2 + 1}) = - \ln(x+2 + \sqrt{(x+2)^2 - 1}) = \ln(\frac{1}{x+2 + \sqrt{(x+2)^2 - 1}}).
So, x+x2+1=1x+2+(x+2)21x + \sqrt{x^2 + 1} = \frac{1}{x+2 + \sqrt{(x+2)^2 - 1}}.
(x+x2+1)(x+2+x2+4x+3)=1(x + \sqrt{x^2 + 1}) (x+2 + \sqrt{x^2 + 4x + 3}) = 1.
Also, since cosh1(x+2)\cosh^{-1}(x+2) is defined, we require x+21x+2 \geq 1, which means x1x \geq -1.
sinh1x=cosh1(x+2)\sinh^{-1} x = - \cosh^{-1} (x+2)
Taking sinh on both sides, x=sinh(cosh1(x+2))=sinh(cosh1(x+2))x = \sinh(-\cosh^{-1}(x+2)) = - \sinh(\cosh^{-1}(x+2)).
We know that cosh2ysinh2y=1\cosh^2 y - \sinh^2 y = 1, so sinhy=±cosh2y1\sinh y = \pm \sqrt{\cosh^2 y - 1}.
Thus, x=cosh2(cosh1(x+2))1=(x+2)21=x2+4x+3x = - \sqrt{\cosh^2(\cosh^{-1}(x+2)) - 1} = - \sqrt{(x+2)^2 - 1} = - \sqrt{x^2 + 4x + 3}.
Squaring both sides gives x2=x2+4x+3x^2 = x^2 + 4x + 3, so 4x+3=04x + 3 = 0, and x=34x = -\frac{3}{4}.
Now, we need to check if this value of xx works. Since x1x \geq -1, x=3/4x = -3/4 is a candidate.
When x=34x = -\frac{3}{4}, the original equation becomes:
sinh1(34)+cosh1(34+2)=sinh1(34)+cosh1(54)\sinh^{-1}(-\frac{3}{4}) + \cosh^{-1}(-\frac{3}{4} + 2) = \sinh^{-1}(-\frac{3}{4}) + \cosh^{-1}(\frac{5}{4}).
sinh1(34)=ln(34+916+1)=ln(34+54)=ln(24)=ln(12)=ln2\sinh^{-1}(-\frac{3}{4}) = \ln(-\frac{3}{4} + \sqrt{\frac{9}{16} + 1}) = \ln(-\frac{3}{4} + \frac{5}{4}) = \ln(\frac{2}{4}) = \ln(\frac{1}{2}) = - \ln 2.
cosh1(54)=ln(54+25161)=ln(54+34)=ln(84)=ln2\cosh^{-1}(\frac{5}{4}) = \ln(\frac{5}{4} + \sqrt{\frac{25}{16} - 1}) = \ln(\frac{5}{4} + \frac{3}{4}) = \ln(\frac{8}{4}) = \ln 2.
So, sinh1(34)+cosh1(54)=ln2+ln2=0\sinh^{-1}(-\frac{3}{4}) + \cosh^{-1}(\frac{5}{4}) = - \ln 2 + \ln 2 = 0.

3. Final Answer

a) Verified.
b) x=34x = -\frac{3}{4}

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2