The problem asks to calculate the derivatives of the following three expressions: a) $x^4 - 3x^2 + 4x - 1$ b) $\frac{2x+3}{5x-1}$ c) $\cos(x) \cdot e^x$

AnalysisDerivativesCalculusPower RuleQuotient RuleProduct RulePolynomialsTrigonometric FunctionsExponential Functions
2025/3/13

1. Problem Description

The problem asks to calculate the derivatives of the following three expressions:
a) x43x2+4x1x^4 - 3x^2 + 4x - 1
b) 2x+35x1\frac{2x+3}{5x-1}
c) cos(x)ex\cos(x) \cdot e^x

2. Solution Steps

a) Let f(x)=x43x2+4x1f(x) = x^4 - 3x^2 + 4x - 1. We need to find f(x)f'(x).
Using the power rule and sum/difference rule for derivatives:
ddxxn=nxn1\frac{d}{dx} x^n = nx^{n-1}
ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)
So, f(x)=ddx(x4)3ddx(x2)+4ddx(x)ddx(1)f'(x) = \frac{d}{dx} (x^4) - 3 \frac{d}{dx} (x^2) + 4 \frac{d}{dx} (x) - \frac{d}{dx} (1)
f(x)=4x33(2x)+4(1)0f'(x) = 4x^3 - 3(2x) + 4(1) - 0
f(x)=4x36x+4f'(x) = 4x^3 - 6x + 4
b) Let g(x)=2x+35x1g(x) = \frac{2x+3}{5x-1}. We need to find g(x)g'(x).
Using the quotient rule:
ddxu(x)v(x)=u(x)v(x)u(x)v(x)[v(x)]2\frac{d}{dx} \frac{u(x)}{v(x)} = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}
Here, u(x)=2x+3u(x) = 2x+3 and v(x)=5x1v(x) = 5x-1.
u(x)=ddx(2x+3)=2u'(x) = \frac{d}{dx} (2x+3) = 2
v(x)=ddx(5x1)=5v'(x) = \frac{d}{dx} (5x-1) = 5
Therefore,
g(x)=2(5x1)(2x+3)(5)(5x1)2g'(x) = \frac{2(5x-1) - (2x+3)(5)}{(5x-1)^2}
g(x)=10x2(10x+15)(5x1)2g'(x) = \frac{10x-2 - (10x+15)}{(5x-1)^2}
g(x)=10x210x15(5x1)2g'(x) = \frac{10x-2 - 10x - 15}{(5x-1)^2}
g(x)=17(5x1)2g'(x) = \frac{-17}{(5x-1)^2}
c) Let h(x)=cos(x)exh(x) = \cos(x) \cdot e^x. We need to find h(x)h'(x).
Using the product rule:
ddx[u(x)v(x)]=u(x)v(x)+u(x)v(x)\frac{d}{dx} [u(x)v(x)] = u'(x)v(x) + u(x)v'(x)
Here, u(x)=cos(x)u(x) = \cos(x) and v(x)=exv(x) = e^x.
u(x)=ddxcos(x)=sin(x)u'(x) = \frac{d}{dx} \cos(x) = -\sin(x)
v(x)=ddxex=exv'(x) = \frac{d}{dx} e^x = e^x
Therefore,
h(x)=sin(x)ex+cos(x)exh'(x) = -\sin(x)e^x + \cos(x)e^x
h(x)=ex(cos(x)sin(x))h'(x) = e^x(\cos(x) - \sin(x))

3. Final Answer

a) 4x36x+44x^3 - 6x + 4
b) 17(5x1)2\frac{-17}{(5x-1)^2}
c) ex(cos(x)sin(x))e^x(\cos(x) - \sin(x))

Related problems in "Analysis"

We need to evaluate the definite integral: $\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1...

Definite IntegralCalculusIntegration TechniquesExponential Functions
2025/4/12

We need to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/12

We are asked to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax...

Definite IntegralIntegrationCalculusExponential Functions
2025/4/12

We are asked to evaluate the integral $$ \int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx $$ where...

Definite IntegralLambert W functionGamma functionIntegration by substitutionCalculus
2025/4/12

We need to evaluate the definite integral: $\int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx$, whe...

Definite IntegralLambert W functionGamma FunctionIntegration by SubstitutionDivergence
2025/4/12

We need to evaluate the definite integral from $0$ to $+\infty$ of the function $\frac{[W(x)]^2}{x^2...

Definite IntegralLambert W functionSubstitutionGamma Function
2025/4/12

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{6}} \frac{\sin x \sin(x + \frac...

Definite IntegralTrigonometric IdentitiesSubstitutionIntegration Techniques
2025/4/12

The problem has two parts. Part (a) asks to determine the truthfulness of two statements and provide...

CalculusExtreme ValuesRolle's TheoremHyperbolic Functions
2025/4/12

The problem asks us to determine whether two statements about differentiability and continuity are t...

DifferentiabilityContinuityLimitsReal AnalysisContrapositive
2025/4/11

The problem asks us to find the domain of the function $f(x) = \frac{\sqrt{(\sqrt{x})^x - x^{\sqrt{x...

DomainFunctionsLogarithmsExponentsInequalities
2025/4/11