The problem asks to find the derivatives of two expressions: a) $x^4 - 3x^2 + 4x - 1$ b) $\frac{2x+3}{5x-1}$

AnalysisCalculusDifferentiationDerivativesPower RuleQuotient Rule
2025/3/13

1. Problem Description

The problem asks to find the derivatives of two expressions:
a) x43x2+4x1x^4 - 3x^2 + 4x - 1
b) 2x+35x1\frac{2x+3}{5x-1}

2. Solution Steps

a) To find the derivative of x43x2+4x1x^4 - 3x^2 + 4x - 1, we use the power rule and the sum/difference rule.
The power rule states that if f(x)=xnf(x) = x^n, then f(x)=nxn1f'(x) = nx^{n-1}.
The sum/difference rule states that if f(x)=u(x)±v(x)f(x) = u(x) \pm v(x), then f(x)=u(x)±v(x)f'(x) = u'(x) \pm v'(x).
So,
ddx(x43x2+4x1)=ddx(x4)ddx(3x2)+ddx(4x)ddx(1)\frac{d}{dx}(x^4 - 3x^2 + 4x - 1) = \frac{d}{dx}(x^4) - \frac{d}{dx}(3x^2) + \frac{d}{dx}(4x) - \frac{d}{dx}(1)
=4x33(2x)+4(1)0= 4x^3 - 3(2x) + 4(1) - 0
=4x36x+4= 4x^3 - 6x + 4
b) To find the derivative of 2x+35x1\frac{2x+3}{5x-1}, we use the quotient rule.
The quotient rule states that if f(x)=u(x)v(x)f(x) = \frac{u(x)}{v(x)}, then f(x)=u(x)v(x)u(x)v(x)[v(x)]2f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}.
Here, u(x)=2x+3u(x) = 2x+3 and v(x)=5x1v(x) = 5x-1.
Then, u(x)=2u'(x) = 2 and v(x)=5v'(x) = 5.
So,
ddx(2x+35x1)=2(5x1)(2x+3)(5)(5x1)2\frac{d}{dx}(\frac{2x+3}{5x-1}) = \frac{2(5x-1) - (2x+3)(5)}{(5x-1)^2}
=10x2(10x+15)(5x1)2= \frac{10x - 2 - (10x + 15)}{(5x-1)^2}
=10x210x15(5x1)2= \frac{10x - 2 - 10x - 15}{(5x-1)^2}
=17(5x1)2= \frac{-17}{(5x-1)^2}

3. Final Answer

a) 4x36x+44x^3 - 6x + 4
b) 17(5x1)2\frac{-17}{(5x-1)^2}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1