We are asked to evaluate the integral $$ \int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx $$ where $W(x)$ is the Lambert W function.
2025/4/12
1. Problem Description
We are asked to evaluate the integral
\int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx
where is the Lambert W function.
2. Solution Steps
Let be the given integral. We have:
I = \int_{0}^{+\infty} \frac{[W(x)]^2}{x^{5/2}} dx
Let . Then and . Therefore,
I = \int_{0}^{+\infty} \frac{t^2}{(te^t)^{5/2}} e^t(1+t) dt = \int_{0}^{+\infty} \frac{t^2}{t^{5/2}e^{5t/2}} e^t(1+t) dt
I = \int_{0}^{+\infty} \frac{t^2 e^t(1+t)}{t^{5/2} e^{5t/2}} dt = \int_{0}^{+\infty} \frac{t^2 (1+t)}{t^{5/2} e^{3t/2}} dt = \int_{0}^{+\infty} \frac{t^{2}(1+t)}{t^{5/2}} e^{-3t/2} dt
I = \int_{0}^{+\infty} (t^{-1/2} + t^{1/2}) e^{-3t/2} dt
We can write this as
I = \int_{0}^{+\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{+\infty} t^{1/2} e^{-3t/2} dt
Recall the Gamma function:
\Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt
Let . Then and .
So,
\int_{0}^{+\infty} t^{z-1} e^{-at} dt = \int_{0}^{+\infty} (\frac{2}{3} u)^{z-1} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{z-1} \frac{2}{3} \int_{0}^{+\infty} u^{z-1} e^{-u} du
\int_{0}^{+\infty} t^{z-1} e^{-at} dt = (\frac{2}{3})^z \int_{0}^{+\infty} u^{z-1} e^{-u} du = (\frac{2}{3})^z \Gamma(z)
For the first term, , so .
\int_{0}^{+\infty} t^{-1/2} e^{-3t/2} dt = (\frac{2}{3})^{1/2} \Gamma(\frac{1}{2}) = \sqrt{\frac{2}{3}} \sqrt{\pi} = \sqrt{\frac{2\pi}{3}}
For the second term, , so .
\int_{0}^{+\infty} t^{1/2} e^{-3t/2} dt = (\frac{2}{3})^{3/2} \Gamma(\frac{3}{2}) = (\frac{2}{3})^{3/2} \frac{1}{2} \Gamma(\frac{1}{2}) = (\frac{2}{3})^{3/2} \frac{1}{2} \sqrt{\pi} = \frac{2}{3}\sqrt{\frac{2}{3}} \frac{1}{2} \sqrt{\pi} = \frac{1}{3}\sqrt{\frac{2\pi}{3}}
Therefore,
I = \sqrt{\frac{2\pi}{3}} + \frac{1}{3}\sqrt{\frac{2\pi}{3}} = \frac{4}{3} \sqrt{\frac{2\pi}{3}} = \frac{4}{3\sqrt{3}} \sqrt{2\pi} = \frac{4\sqrt{3}}{9} \sqrt{2\pi} = \frac{4\sqrt{6\pi}}{9}
Using the result that with , , then we have
\int_{0}^{+\infty} \frac{[W(x)]^2}{x^{5/2}} dx = \frac{2}{5/2-1} (\frac{5/2}{5/2-1})^{5/2-1} \Gamma(5/2-1) = \frac{2}{3/2} (\frac{5/2}{3/2})^{3/2} \Gamma(3/2)
= \frac{4}{3} (\frac{5}{3})^{3/2} \frac{1}{2} \Gamma(1/2) = \frac{2}{3} \frac{5\sqrt{5}}{3\sqrt{3}} \sqrt{\pi} = \frac{10\sqrt{15}}{27}\sqrt{\pi} = \frac{10}{27} \sqrt{15\pi}
Then we have .
3. Final Answer
The final answer is