We are asked to evaluate the integral $$ \int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx $$ where $W(x)$ is the Lambert W function.

AnalysisDefinite IntegralLambert W functionGamma functionIntegration by substitutionCalculus
2025/4/12

1. Problem Description

We are asked to evaluate the integral
\int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx
where W(x)W(x) is the Lambert W function.

2. Solution Steps

Let II be the given integral. We have:
I = \int_{0}^{+\infty} \frac{[W(x)]^2}{x^{5/2}} dx
Let x=tetx = te^t. Then W(x)=tW(x) = t and dx=(et+tet)dt=et(1+t)dtdx = (e^t + te^t) dt = e^t(1+t)dt. Therefore,
I = \int_{0}^{+\infty} \frac{t^2}{(te^t)^{5/2}} e^t(1+t) dt = \int_{0}^{+\infty} \frac{t^2}{t^{5/2}e^{5t/2}} e^t(1+t) dt
I = \int_{0}^{+\infty} \frac{t^2 e^t(1+t)}{t^{5/2} e^{5t/2}} dt = \int_{0}^{+\infty} \frac{t^2 (1+t)}{t^{5/2} e^{3t/2}} dt = \int_{0}^{+\infty} \frac{t^{2}(1+t)}{t^{5/2}} e^{-3t/2} dt
I = \int_{0}^{+\infty} (t^{-1/2} + t^{1/2}) e^{-3t/2} dt
We can write this as
I = \int_{0}^{+\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{+\infty} t^{1/2} e^{-3t/2} dt
Recall the Gamma function:
\Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt
Let u=32tu = \frac{3}{2}t. Then t=23ut = \frac{2}{3} u and dt=23dudt = \frac{2}{3} du.
So,
\int_{0}^{+\infty} t^{z-1} e^{-at} dt = \int_{0}^{+\infty} (\frac{2}{3} u)^{z-1} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{z-1} \frac{2}{3} \int_{0}^{+\infty} u^{z-1} e^{-u} du
\int_{0}^{+\infty} t^{z-1} e^{-at} dt = (\frac{2}{3})^z \int_{0}^{+\infty} u^{z-1} e^{-u} du = (\frac{2}{3})^z \Gamma(z)
For the first term, z1=1/2z-1 = -1/2, so z=1/2z = 1/2.
\int_{0}^{+\infty} t^{-1/2} e^{-3t/2} dt = (\frac{2}{3})^{1/2} \Gamma(\frac{1}{2}) = \sqrt{\frac{2}{3}} \sqrt{\pi} = \sqrt{\frac{2\pi}{3}}
For the second term, z1=1/2z-1 = 1/2, so z=3/2z = 3/2.
\int_{0}^{+\infty} t^{1/2} e^{-3t/2} dt = (\frac{2}{3})^{3/2} \Gamma(\frac{3}{2}) = (\frac{2}{3})^{3/2} \frac{1}{2} \Gamma(\frac{1}{2}) = (\frac{2}{3})^{3/2} \frac{1}{2} \sqrt{\pi} = \frac{2}{3}\sqrt{\frac{2}{3}} \frac{1}{2} \sqrt{\pi} = \frac{1}{3}\sqrt{\frac{2\pi}{3}}
Therefore,
I = \sqrt{\frac{2\pi}{3}} + \frac{1}{3}\sqrt{\frac{2\pi}{3}} = \frac{4}{3} \sqrt{\frac{2\pi}{3}} = \frac{4}{3\sqrt{3}} \sqrt{2\pi} = \frac{4\sqrt{3}}{9} \sqrt{2\pi} = \frac{4\sqrt{6\pi}}{9}
Using the result that 0[W(x)]nxmdx=nm1(mm1)m1Γ(m1)\int_0^\infty [W(x)]^n x^{-m} dx = \frac{n}{m-1}(\frac{m}{m-1})^{m-1} \Gamma(m-1) with n=2n=2, m=5/2m = 5/2, then we have
\int_{0}^{+\infty} \frac{[W(x)]^2}{x^{5/2}} dx = \frac{2}{5/2-1} (\frac{5/2}{5/2-1})^{5/2-1} \Gamma(5/2-1) = \frac{2}{3/2} (\frac{5/2}{3/2})^{3/2} \Gamma(3/2)
= \frac{4}{3} (\frac{5}{3})^{3/2} \frac{1}{2} \Gamma(1/2) = \frac{2}{3} \frac{5\sqrt{5}}{3\sqrt{3}} \sqrt{\pi} = \frac{10\sqrt{15}}{27}\sqrt{\pi} = \frac{10}{27} \sqrt{15\pi}
Then we have 0+(t1/2+t1/2)e3t/2dt=π(23)1/2+Γ(3/2)(23)3/2=π23+π2(23)23=2π3(1+13)=432π3=496π\int_{0}^{+\infty} (t^{-1/2} + t^{1/2}) e^{-3t/2} dt = \sqrt{\pi}(\frac{2}{3})^{1/2} + \Gamma(3/2)(\frac{2}{3})^{3/2} = \sqrt{\pi} \sqrt{\frac{2}{3}} + \frac{\sqrt{\pi}}{2} (\frac{2}{3})\sqrt{\frac{2}{3}} = \sqrt{\frac{2\pi}{3}}(1+\frac{1}{3}) = \frac{4}{3} \sqrt{\frac{2\pi}{3}} = \frac{4}{9} \sqrt{6\pi}.

3. Final Answer

The final answer is 46π9\frac{4\sqrt{6\pi}}{9}

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13