The problem asks us to simplify the expression $(\frac{5x^2}{y})^{-2}$ and express the answer with positive exponents.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/4/15

1. Problem Description

The problem asks us to simplify the expression (5x2y)2(\frac{5x^2}{y})^{-2} and express the answer with positive exponents.

2. Solution Steps

We are given the expression (5x2y)2(\frac{5x^2}{y})^{-2}.
First, we can use the property that (ab)n=anbn(\frac{a}{b})^n = \frac{a^n}{b^n}. So,
(5x2y)2=(5x2)2y2(\frac{5x^2}{y})^{-2} = \frac{(5x^2)^{-2}}{y^{-2}}.
Next, we can use the property that (ab)n=anbn(ab)^n = a^n b^n. So,
(5x2)2=52(x2)2(5x^2)^{-2} = 5^{-2}(x^2)^{-2}.
Also, we can use the property that (am)n=amn(a^m)^n = a^{mn}. So,
(x2)2=x2(2)=x4(x^2)^{-2} = x^{2*(-2)} = x^{-4}.
Therefore, (5x2)2=52x4(5x^2)^{-2} = 5^{-2} x^{-4}.
Substituting this back into our expression, we have:
(5x2)2y2=52x4y2\frac{(5x^2)^{-2}}{y^{-2}} = \frac{5^{-2}x^{-4}}{y^{-2}}.
To express with positive exponents, we can use the property that an=1ana^{-n} = \frac{1}{a^n}. So, 52=152=1255^{-2} = \frac{1}{5^2} = \frac{1}{25}, x4=1x4x^{-4} = \frac{1}{x^4}, and y2=1y2y^{-2} = \frac{1}{y^2}. Therefore, 1y2=y2\frac{1}{y^{-2}} = y^2.
So our expression becomes:
52x4y2=1521x41y2=125x41y2=125x4y21=y225x4\frac{5^{-2}x^{-4}}{y^{-2}} = \frac{\frac{1}{5^2} \cdot \frac{1}{x^4}}{\frac{1}{y^2}} = \frac{\frac{1}{25x^4}}{\frac{1}{y^2}} = \frac{1}{25x^4} \cdot \frac{y^2}{1} = \frac{y^2}{25x^4}.

3. Final Answer

y225x4\frac{y^2}{25x^4}

Related problems in "Algebra"

The problem is to solve the logarithmic equation $\log_{3} x = 2$ for $x$.

LogarithmsExponential FormEquation Solving
2025/4/22

We need to solve the equation $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$ for $x$....

Linear EquationsEquation SolvingAlgebraic Manipulation
2025/4/22

We are asked to solve the following equations: 4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$ 6. $0.3...

Linear EquationsSolving EquationsFractionsAlgebraic Manipulation
2025/4/22

The problem is to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Linear EquationsSolving EquationsFractions
2025/4/22

Solve the equation $\frac{3-5x}{7} - \frac{x}{4} = 2 + \frac{5-4x}{8}$ for $x$.

Linear EquationsEquation SolvingFractions
2025/4/22

Solve the following equations for $x$: Problem 7: $\frac{4}{3x} - \frac{3}{4x} = 7$ Problem 9: $\fra...

Linear EquationsSolving EquationsFractions
2025/4/22

The problem asks to find the value of the expression $((log_2 9)^2)^{\frac{1}{log_2(log_2 9)}} \time...

LogarithmsExponentiationAlgebraic Manipulation
2025/4/22

We are asked to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Algebraic EquationsSolving EquationsFractions
2025/4/22

The problem is to evaluate the expression $6 + \log_{\frac{3}{2}} \left\{ \frac{1}{3\sqrt{2}} \sqrt{...

LogarithmsQuadratic EquationsRadicalsAlgebraic Manipulation
2025/4/22

We need to simplify three logarithmic expressions: i) $log_10 5 + 2 log_10 4$ ii) $2 log 7 - log 14$...

LogarithmsLogarithmic PropertiesSimplification
2025/4/22