The problem is to simplify the expression $(\frac{8xy^{-1}}{y^5})^{-2}$ and express the answer with positive exponents.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/4/15

1. Problem Description

The problem is to simplify the expression (8xy1y5)2(\frac{8xy^{-1}}{y^5})^{-2} and express the answer with positive exponents.

2. Solution Steps

We have (8xy1y5)2(\frac{8xy^{-1}}{y^5})^{-2}.
First, we simplify the expression inside the parentheses:
8xy1y5=8xy1y5=8xy15=8xy6\frac{8xy^{-1}}{y^5} = 8xy^{-1}y^{-5} = 8xy^{-1-5} = 8xy^{-6}
Now, we raise this to the power of 2-2:
(8xy6)2=82x2(y6)2=82x2y(6)(2)=82x2y12(8xy^{-6})^{-2} = 8^{-2}x^{-2}(y^{-6})^{-2} = 8^{-2}x^{-2}y^{(-6)(-2)} = 8^{-2}x^{-2}y^{12}
Now, we convert the negative exponents to positive exponents:
82x2y12=1821x2y12=y1282x2=y1264x28^{-2}x^{-2}y^{12} = \frac{1}{8^2} \cdot \frac{1}{x^2} \cdot y^{12} = \frac{y^{12}}{8^2x^2} = \frac{y^{12}}{64x^2}
an=1ana^{-n} = \frac{1}{a^n}
(am)n=amn(a^m)^n = a^{mn}

3. Final Answer

y1264x2\frac{y^{12}}{64x^2}

Related problems in "Algebra"

The problem is to solve the logarithmic equation $\log_{3} x = 2$ for $x$.

LogarithmsExponential FormEquation Solving
2025/4/22

We need to solve the equation $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$ for $x$....

Linear EquationsEquation SolvingAlgebraic Manipulation
2025/4/22

We are asked to solve the following equations: 4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$ 6. $0.3...

Linear EquationsSolving EquationsFractionsAlgebraic Manipulation
2025/4/22

The problem is to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Linear EquationsSolving EquationsFractions
2025/4/22

Solve the equation $\frac{3-5x}{7} - \frac{x}{4} = 2 + \frac{5-4x}{8}$ for $x$.

Linear EquationsEquation SolvingFractions
2025/4/22

Solve the following equations for $x$: Problem 7: $\frac{4}{3x} - \frac{3}{4x} = 7$ Problem 9: $\fra...

Linear EquationsSolving EquationsFractions
2025/4/22

The problem asks to find the value of the expression $((log_2 9)^2)^{\frac{1}{log_2(log_2 9)}} \time...

LogarithmsExponentiationAlgebraic Manipulation
2025/4/22

We are asked to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Algebraic EquationsSolving EquationsFractions
2025/4/22

The problem is to evaluate the expression $6 + \log_{\frac{3}{2}} \left\{ \frac{1}{3\sqrt{2}} \sqrt{...

LogarithmsQuadratic EquationsRadicalsAlgebraic Manipulation
2025/4/22

We need to simplify three logarithmic expressions: i) $log_10 5 + 2 log_10 4$ ii) $2 log 7 - log 14$...

LogarithmsLogarithmic PropertiesSimplification
2025/4/22