The problem asks us to simplify the expression $(\frac{8x^4}{y})^{-2}$ and express the answer with positive exponents.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/4/21

1. Problem Description

The problem asks us to simplify the expression (8x4y)2(\frac{8x^4}{y})^{-2} and express the answer with positive exponents.

2. Solution Steps

We have the expression (8x4y)2(\frac{8x^4}{y})^{-2}.
First, we apply the rule (a/b)n=an/bn(a/b)^n = a^n / b^n.
(8x4y)2=(8x4)2y2(\frac{8x^4}{y})^{-2} = \frac{(8x^4)^{-2}}{y^{-2}}
Next, we apply the rule (ab)n=anbn(ab)^n = a^n b^n.
(8x4)2y2=82(x4)2y2\frac{(8x^4)^{-2}}{y^{-2}} = \frac{8^{-2}(x^4)^{-2}}{y^{-2}}
Next, we apply the rule (am)n=amn(a^m)^n = a^{mn}.
82(x4)2y2=82x8y2\frac{8^{-2}(x^4)^{-2}}{y^{-2}} = \frac{8^{-2}x^{-8}}{y^{-2}}
Now, we use the rule an=1ana^{-n} = \frac{1}{a^n}
82x8y2=1821x81y2\frac{8^{-2}x^{-8}}{y^{-2}} = \frac{\frac{1}{8^2}\frac{1}{x^8}}{\frac{1}{y^2}}
1821x81y2=182x8y21=y282x8\frac{\frac{1}{8^2}\frac{1}{x^8}}{\frac{1}{y^2}} = \frac{1}{8^2 x^8} \cdot \frac{y^2}{1} = \frac{y^2}{8^2 x^8}
Finally, we calculate 82=648^2 = 64.
y282x8=y264x8\frac{y^2}{8^2 x^8} = \frac{y^2}{64x^8}

3. Final Answer

The simplified expression is y264x8\frac{y^2}{64x^8}.

Related problems in "Algebra"

Solve the equation $2(x+1)^2 - (x-2)^2 = x(x-3)$ for $x$.

Quadratic EquationsEquation SolvingAlgebraic Manipulation
2025/6/25

We are asked to solve the following equation for $x$: $$(2x+1)^2 - 4(x-3)^2 = 5x+10$$

Quadratic EquationsEquation SolvingSimplification
2025/6/25

We are asked to solve the equation $6(3x-4) - 10(x-3) = 10(2x-3)$ for $x$.

Linear EquationsEquation SolvingSimplification
2025/6/25

We need to solve the equation $7(x+1) = 9 - (2x-1)$ for $x$.

Linear EquationsEquation SolvingVariable Isolation
2025/6/25

We are given the complex number $A = 1 + i + i^2 + \dots + i^{2009}$ and we are asked to determine i...

Complex NumbersGeometric SeriesComplex Number ArithmeticPowers of i
2025/6/25

We are given that $A = 1 + i + i^2 + ... + i^{2009}$. We are also given that $B = -\frac{1}{2} + i\...

Complex NumbersPowers of iSeries
2025/6/25

We are given $B = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $C = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$. ...

Complex NumbersExponentsSimplification
2025/6/25

The problem states that $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $T = \begin{pmatrix} -3 \\ 1 \en...

VectorsMatrix OperationsVector Components
2025/6/24

We are given two matrices $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $T = \begin{pmatrix} -3 \\ ...

Matrix MultiplicationLinear TransformationsVectors
2025/6/24

The problem gives a function $f(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x$. We need to: (9...

TrigonometryTrigonometric IdentitiesDouble Angle FormulasFinding Maximum and Minimum
2025/6/24