The problem asks to find the value of the integral $\int \frac{1}{\sin x - \cos x} dx$.

AnalysisCalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitutionTrigonometric Identities
2025/3/17

1. Problem Description

The problem asks to find the value of the integral 1sinxcosxdx\int \frac{1}{\sin x - \cos x} dx.

2. Solution Steps

First, rewrite the denominator using the identity asinxbcosx=Rsin(xα)a \sin x - b \cos x = R \sin(x-\alpha) where R=a2+b2R = \sqrt{a^2 + b^2} and tanα=ba\tan \alpha = \frac{b}{a}. In our case, a=1a = 1 and b=1b = 1, so R=12+12=2R = \sqrt{1^2 + 1^2} = \sqrt{2} and tanα=11=1\tan \alpha = \frac{1}{1} = 1, which means α=π4\alpha = \frac{\pi}{4}.
Therefore, sinxcosx=2sin(xπ4)\sin x - \cos x = \sqrt{2} \sin(x - \frac{\pi}{4}).
So the integral becomes:
1sinxcosxdx=12sin(xπ4)dx=121sin(xπ4)dx\int \frac{1}{\sin x - \cos x} dx = \int \frac{1}{\sqrt{2} \sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sin(x - \frac{\pi}{4})} dx.
Using the trigonometric identity sin(x)=2sin(x2)cos(x2)\sin(x) = 2 \sin(\frac{x}{2}) \cos(\frac{x}{2}), we have
sin(xπ4)=2sin(xπ42)cos(xπ42)\sin(x - \frac{\pi}{4}) = 2 \sin(\frac{x - \frac{\pi}{4}}{2}) \cos(\frac{x - \frac{\pi}{4}}{2}).
Also, we know that csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}. Therefore,
121sin(xπ4)dx=12csc(xπ4)dx\frac{1}{\sqrt{2}} \int \frac{1}{\sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx.
The integral of csc(u)\csc(u) is known to be lncsc(u)+cot(u)+C-\ln|\csc(u) + \cot(u)| + C or lntan(u2)+C\ln|\tan(\frac{u}{2})| + C.
Using the second form:
12csc(xπ4)dx=12lntan(xπ42)+C=12lntan(x2π8)+C\frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} \ln|\tan(\frac{x - \frac{\pi}{4}}{2})| + C = \frac{1}{\sqrt{2}} \ln|\tan(\frac{x}{2} - \frac{\pi}{8})| + C.

3. Final Answer

12lntan(x2π8)+C\frac{1}{\sqrt{2}} \ln|\tan(\frac{x}{2} - \frac{\pi}{8})| + C

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2