The problem asks to find the value of the integral $\int \frac{1}{\sin x - \cos x} dx$.

AnalysisCalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitutionTrigonometric Identities
2025/3/17

1. Problem Description

The problem asks to find the value of the integral 1sinxcosxdx\int \frac{1}{\sin x - \cos x} dx.

2. Solution Steps

First, rewrite the denominator using the identity asinxbcosx=Rsin(xα)a \sin x - b \cos x = R \sin(x-\alpha) where R=a2+b2R = \sqrt{a^2 + b^2} and tanα=ba\tan \alpha = \frac{b}{a}. In our case, a=1a = 1 and b=1b = 1, so R=12+12=2R = \sqrt{1^2 + 1^2} = \sqrt{2} and tanα=11=1\tan \alpha = \frac{1}{1} = 1, which means α=π4\alpha = \frac{\pi}{4}.
Therefore, sinxcosx=2sin(xπ4)\sin x - \cos x = \sqrt{2} \sin(x - \frac{\pi}{4}).
So the integral becomes:
1sinxcosxdx=12sin(xπ4)dx=121sin(xπ4)dx\int \frac{1}{\sin x - \cos x} dx = \int \frac{1}{\sqrt{2} \sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sin(x - \frac{\pi}{4})} dx.
Using the trigonometric identity sin(x)=2sin(x2)cos(x2)\sin(x) = 2 \sin(\frac{x}{2}) \cos(\frac{x}{2}), we have
sin(xπ4)=2sin(xπ42)cos(xπ42)\sin(x - \frac{\pi}{4}) = 2 \sin(\frac{x - \frac{\pi}{4}}{2}) \cos(\frac{x - \frac{\pi}{4}}{2}).
Also, we know that csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}. Therefore,
121sin(xπ4)dx=12csc(xπ4)dx\frac{1}{\sqrt{2}} \int \frac{1}{\sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx.
The integral of csc(u)\csc(u) is known to be lncsc(u)+cot(u)+C-\ln|\csc(u) + \cot(u)| + C or lntan(u2)+C\ln|\tan(\frac{u}{2})| + C.
Using the second form:
12csc(xπ4)dx=12lntan(xπ42)+C=12lntan(x2π8)+C\frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} \ln|\tan(\frac{x - \frac{\pi}{4}}{2})| + C = \frac{1}{\sqrt{2}} \ln|\tan(\frac{x}{2} - \frac{\pi}{8})| + C.

3. Final Answer

12lntan(x2π8)+C\frac{1}{\sqrt{2}} \ln|\tan(\frac{x}{2} - \frac{\pi}{8})| + C

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1