Simplify the expression $4\log_3 2 - \log_3 4 - 2\log_3 \sqrt{3} - \log_3 12$ and write the final answer as a single logarithm.

AlgebraLogarithmsLogarithmic PropertiesSimplification
2025/4/23

1. Problem Description

Simplify the expression 4log32log342log33log3124\log_3 2 - \log_3 4 - 2\log_3 \sqrt{3} - \log_3 12 and write the final answer as a single logarithm.

2. Solution Steps

First, we use the power rule of logarithms: logb(xn)=nlogbx\log_b(x^n) = n \log_b x to rewrite the expression.
4log32=log3(24)=log3164\log_3 2 = \log_3 (2^4) = \log_3 16
2log33=log3(3)2=log33=12\log_3 \sqrt{3} = \log_3 (\sqrt{3})^2 = \log_3 3 = 1
The expression becomes:
log316log34log33log312\log_3 16 - \log_3 4 - \log_3 3 - \log_3 12
Next, we use the quotient rule of logarithms: logbxlogby=logbxy\log_b x - \log_b y = \log_b \frac{x}{y}.
log316log34=log3164=log34\log_3 16 - \log_3 4 = \log_3 \frac{16}{4} = \log_3 4
log34log33log312=log343log312=log34/312=log34312=log3436=log319\log_3 4 - \log_3 3 - \log_3 12 = \log_3 \frac{4}{3} - \log_3 12 = \log_3 \frac{4/3}{12} = \log_3 \frac{4}{3 \cdot 12} = \log_3 \frac{4}{36} = \log_3 \frac{1}{9}
Since 9=329 = 3^2, then 19=32\frac{1}{9} = 3^{-2}.
log319=log332\log_3 \frac{1}{9} = \log_3 3^{-2}
Using the power rule again,
log332=2log33=21=2\log_3 3^{-2} = -2 \log_3 3 = -2 \cdot 1 = -2
We can rewrite 2-2 as a single logarithm:
2=log332=log319-2 = \log_3 3^{-2} = \log_3 \frac{1}{9}
Alternatively,
log316log34log33log312=log3164312=log316144=log319=log332=2log33=2\log_3 16 - \log_3 4 - \log_3 3 - \log_3 12 = \log_3 \frac{16}{4 \cdot 3 \cdot 12} = \log_3 \frac{16}{144} = \log_3 \frac{1}{9} = \log_3 3^{-2} = -2 \log_3 3 = -2
We want to write this as a single logarithm with base

3. We can do so by expressing $-2$ as $\log_3 (3^{-2})$.

log3(32)=log319\log_3 (3^{-2}) = \log_3 \frac{1}{9}

3. Final Answer

log319\log_3 \frac{1}{9}

Related problems in "Algebra"

We are given the complex number $A = 1 + i + i^2 + \dots + i^{2009}$ and we are asked to determine i...

Complex NumbersGeometric SeriesComplex Number ArithmeticPowers of i
2025/6/25

We are given that $A = 1 + i + i^2 + ... + i^{2009}$. We are also given that $B = -\frac{1}{2} + i\...

Complex NumbersPowers of iSeries
2025/6/25

We are given $B = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $C = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$. ...

Complex NumbersExponentsSimplification
2025/6/25

The problem states that $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $T = \begin{pmatrix} -3 \\ 1 \en...

VectorsMatrix OperationsVector Components
2025/6/24

We are given two matrices $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $T = \begin{pmatrix} -3 \\ ...

Matrix MultiplicationLinear TransformationsVectors
2025/6/24

The problem gives a function $f(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x$. We need to: (9...

TrigonometryTrigonometric IdentitiesDouble Angle FormulasFinding Maximum and Minimum
2025/6/24

We are given two functions $f(x) = \frac{2x+7}{7}$ and $g(x) = \frac{3x-6}{6}$. We need to find $g(6...

FunctionsInverse FunctionsFunction Evaluation
2025/6/24

The problem asks to factor the quadratic expression $2x^2 - x - 15$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/6/24

We are asked to evaluate $x^{\frac{1}{2}} = 4$. This means we need to find the value of $x$ that sat...

EquationsExponentsSquare RootsSolving Equations
2025/6/24

The problem is to solve the equation $x^2 = 3x$.

Quadratic EquationsSolving EquationsFactoring
2025/6/24