First, we use the power rule of logarithms: logb(xn)=nlogbx to rewrite the expression. 4log32=log3(24)=log316 2log33=log3(3)2=log33=1 The expression becomes:
log316−log34−log33−log312 Next, we use the quotient rule of logarithms: logbx−logby=logbyx. log316−log34=log3416=log34 log34−log33−log312=log334−log312=log3124/3=log33⋅124=log3364=log391 Since 9=32, then 91=3−2. log391=log33−2 Using the power rule again,
log33−2=−2log33=−2⋅1=−2 We can rewrite −2 as a single logarithm: −2=log33−2=log391 Alternatively,
log316−log34−log33−log312=log34⋅3⋅1216=log314416=log391=log33−2=−2log33=−2 We want to write this as a single logarithm with base