First, we factor the denominators:
b2−b−12=(b−4)(b+3) b2+2b−3=(b+3)(b−1) Then, we rewrite the expression as:
(b−4)(b+3)7b−(b+3)(b−1)4b The least common denominator is (b−4)(b+3)(b−1). Now we rewrite each fraction with the common denominator:
(b−4)(b+3)(b−1)7b(b−1)−(b−4)(b+3)(b−1)4b(b−4) Combine the fractions:
(b−4)(b+3)(b−1)7b(b−1)−4b(b−4) Expand the numerator:
(b−4)(b+3)(b−1)7b2−7b−4b2+16b Simplify the numerator:
(b−4)(b+3)(b−1)3b2+9b Factor the numerator:
(b−4)(b+3)(b−1)3b(b+3) Cancel the common factor (b+3) from numerator and denominator: (b−4)(b−1)3b Expand the denominator:
b2−b−4b+43b b2−5b+43b