The problem asks us to simplify the expression $\frac{7b}{b^2 - b - 12} - \frac{4b}{b^2 + 2b - 3}$.

AlgebraAlgebraic ExpressionsSimplificationRational ExpressionsFactoringFractions
2025/4/25

1. Problem Description

The problem asks us to simplify the expression 7bb2b124bb2+2b3\frac{7b}{b^2 - b - 12} - \frac{4b}{b^2 + 2b - 3}.

2. Solution Steps

First, we factor the denominators:
b2b12=(b4)(b+3)b^2 - b - 12 = (b - 4)(b + 3)
b2+2b3=(b+3)(b1)b^2 + 2b - 3 = (b + 3)(b - 1)
Then, we rewrite the expression as:
7b(b4)(b+3)4b(b+3)(b1)\frac{7b}{(b - 4)(b + 3)} - \frac{4b}{(b + 3)(b - 1)}
The least common denominator is (b4)(b+3)(b1)(b - 4)(b + 3)(b - 1).
Now we rewrite each fraction with the common denominator:
7b(b1)(b4)(b+3)(b1)4b(b4)(b4)(b+3)(b1)\frac{7b(b - 1)}{(b - 4)(b + 3)(b - 1)} - \frac{4b(b - 4)}{(b - 4)(b + 3)(b - 1)}
Combine the fractions:
7b(b1)4b(b4)(b4)(b+3)(b1)\frac{7b(b - 1) - 4b(b - 4)}{(b - 4)(b + 3)(b - 1)}
Expand the numerator:
7b27b4b2+16b(b4)(b+3)(b1)\frac{7b^2 - 7b - 4b^2 + 16b}{(b - 4)(b + 3)(b - 1)}
Simplify the numerator:
3b2+9b(b4)(b+3)(b1)\frac{3b^2 + 9b}{(b - 4)(b + 3)(b - 1)}
Factor the numerator:
3b(b+3)(b4)(b+3)(b1)\frac{3b(b + 3)}{(b - 4)(b + 3)(b - 1)}
Cancel the common factor (b+3)(b + 3) from numerator and denominator:
3b(b4)(b1)\frac{3b}{(b - 4)(b - 1)}
Expand the denominator:
3bb2b4b+4\frac{3b}{b^2 - b - 4b + 4}
3bb25b+4\frac{3b}{b^2 - 5b + 4}

3. Final Answer

3bb25b+4\frac{3b}{b^2 - 5b + 4}

Related problems in "Algebra"