We are asked to solve the quadratic equation $3x^2 - 5x + 1 = 0$ for $x \in \mathbb{R}$, and we must give the answer correct to 2 decimal places.

AlgebraQuadratic EquationsQuadratic FormulaApproximationReal Numbers
2025/3/17

1. Problem Description

We are asked to solve the quadratic equation 3x25x+1=03x^2 - 5x + 1 = 0 for xRx \in \mathbb{R}, and we must give the answer correct to 2 decimal places.

2. Solution Steps

We can use the quadratic formula to solve the equation ax2+bx+c=0ax^2 + bx + c = 0:
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
In our case, a=3a = 3, b=5b = -5, and c=1c = 1. Plugging these values into the quadratic formula, we get:
x=(5)±(5)24(3)(1)2(3)x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(1)}}{2(3)}
x=5±25126x = \frac{5 \pm \sqrt{25 - 12}}{6}
x=5±136x = \frac{5 \pm \sqrt{13}}{6}
So, we have two solutions:
x1=5+136x_1 = \frac{5 + \sqrt{13}}{6}
x2=5136x_2 = \frac{5 - \sqrt{13}}{6}
We need to approximate these values to 2 decimal places.
133.60555\sqrt{13} \approx 3.60555
x1=5+3.605556=8.6055561.434261.43x_1 = \frac{5 + 3.60555}{6} = \frac{8.60555}{6} \approx 1.43426 \approx 1.43
x2=53.605556=1.3944560.2324080.23x_2 = \frac{5 - 3.60555}{6} = \frac{1.39445}{6} \approx 0.232408 \approx 0.23

3. Final Answer

The solutions are x1.43x \approx 1.43 and x0.23x \approx 0.23.