We are asked to expand the expression $(4a - 3b)^2$.AlgebraAlgebraic ExpansionBinomial TheoremPolynomials2025/4/271. Problem DescriptionWe are asked to expand the expression (4a−3b)2(4a - 3b)^2(4a−3b)2.2. Solution StepsWe can expand the expression using the formula (x−y)2=x2−2xy+y2(x-y)^2 = x^2 - 2xy + y^2(x−y)2=x2−2xy+y2.Here, x=4ax = 4ax=4a and y=3by = 3by=3b.Therefore,(4a−3b)2=(4a)2−2(4a)(3b)+(3b)2(4a - 3b)^2 = (4a)^2 - 2(4a)(3b) + (3b)^2(4a−3b)2=(4a)2−2(4a)(3b)+(3b)2=16a2−24ab+9b2= 16a^2 - 24ab + 9b^2=16a2−24ab+9b2The formula used is:(x−y)2=x2−2xy+y2(x - y)^2 = x^2 - 2xy + y^2(x−y)2=x2−2xy+y23. Final Answer16a2−24ab+9b216a^2 - 24ab + 9b^216a2−24ab+9b2