First, we compute the partial derivatives of f(x,y) with respect to x and y: ∂x∂f=∂x∂(yx2)=y2x ∂y∂f=∂y∂(yx2)=x2∂y∂(y1)=x2(−y21)=−y2x2 Next, we evaluate the partial derivatives at the point p=(2,−1): ∂x∂f(2,−1)=−12(2)=−4 ∂y∂f(2,−1)=−(−1)2(2)2=−14=−4 The gradient vector at the point p is: ∇f(2,−1)=(∂x∂f(2,−1),∂y∂f(2,−1))=(−4,−4) Now, we find the z value at the point p=(2,−1): z0=f(2,−1)=−1(2)2=−14=−4 Thus, the point on the surface is (2,−1,−4). The equation of the tangent plane at the point (x0,y0,z0) is given by: z−z0=∂x∂f(x0,y0)(x−x0)+∂y∂f(x0,y0)(y−y0) Plugging in the values we found, we get:
z−(−4)=−4(x−2)−4(y−(−1)) z+4=−4x+8−4y−4 z=−4x−4y+8−4−4 z=−4x−4y 4x+4y+z=0