画像に記載された経済学の練習問題です。具体的には、以下の3つの大問があります。 * 大問1:与えられた数値を2の累乗の形で表現する。 * 大問2:利子率と預金額から、一定期間後の預金残高やGDPを計算する。 * 大問3:計算機を用いて、具体的な数値に対する預金残高、GDP、人口を計算する。 以下では、大問2と大問3の全問を解きます。

応用数学複利計算経済成長指数関数GDP人口減少
2025/4/28

1. 問題の内容

画像に記載された経済学の練習問題です。具体的には、以下の3つの大問があります。
* 大問1:与えられた数値を2の累乗の形で表現する。
* 大問2:利子率と預金額から、一定期間後の預金残高やGDPを計算する。
* 大問3:計算機を用いて、具体的な数値に対する預金残高、GDP、人口を計算する。
以下では、大問2と大問3の全問を解きます。

2. 解き方の手順

大問2
(1) 預金残高は、元金に利子を加えた金額になります。利子率は0.02なので、1年後の残高は
50(1+0.02)=50×1.0250(1 + 0.02) = 50 \times 1.02 (万円)
となります。
(2) 10年後の預金残高は、複利計算によって
50(1+0.02)10=50×1.021050(1 + 0.02)^{10} = 50 \times 1.02^{10} (万円)
となります。
(3) n年後の預金残高は、複利計算によって
A(1+r)nA(1 + r)^n (万円)
となります。
(4) 来年のGDPは、今年のGDPに経済成長率を加えた金額になります。経済成長率は0.05なので、来年のGDPは
Y(1+0.05)=1.05YY(1 + 0.05) = 1.05Y
となります。
(5) 第t期のGDPは、初期のGDPに経済成長率をt回掛け合わせたものになります。したがって、第t期のGDPは
Yt=Y0(1+g)tY_t = Y_0(1 + g)^t
となります。
大問3
(1) 30年後の預金残高は、複利計算によって求められます。元金は100万円、利子率は3%なので、
100(1+0.03)30=100×1.0330242.73100(1 + 0.03)^{30} = 100 \times 1.03^{30} \approx 242.73 (万円)
となります。
(2) 2025年のGDPは、2000年のGDPに毎年10%の成長率を25回掛け合わせたものになります。したがって、
60(1+0.10)25=60×1.1025650.2560(1 + 0.10)^{25} = 60 \times 1.10^{25} \approx 650.25
となります。
(3) 2025年のGDPは、2000年のGDPに毎年1%の成長率を25回掛け合わせたものになります。したがって、
500(1+0.01)25=500×1.0125640.04500(1 + 0.01)^{25} = 500 \times 1.01^{25} \approx 640.04
となります。
(4) 50年後の人口は、現在の人口から毎年1%ずつ減少すると仮定して計算します。したがって、
1.25(10.01)50=1.25×0.99500.761.25(1 - 0.01)^{50} = 1.25 \times 0.99^{50} \approx 0.76 (億人)
となります。

3. 最終的な答え

大問2
(1) 50×1.0250 \times 1.02 万円
(2) 50×1.021050 \times 1.02^{10} 万円
(3) A(1+r)nA(1 + r)^n 万円
(4) 1.05Y1.05Y
(5) Yt=Y0(1+g)tY_t = Y_0(1 + g)^t
大問3
(1) 約242.73万円
(2) 約650.25
(3) 約640.04
(4) 約0.76億人

「応用数学」の関連問題

東京(羽田)を1月15日の午後5時に出発する飛行機が、サンフランシスコに現地時間の午前9時に到着する。この時の搭乗時間(所要時間)を求める。

時間計算時差旅行
2025/4/28

経済学の問題集で、以下の問いに答える。 Q1. 工場の1日の総収入を求める。 Q2. 工場の1週間の総収入を求める。 Q3. 需要関数と供給関数が与えられたとき、均衡数量を求める。 Q4. 均衡価格を...

経済学需要関数供給関数均衡価格均衡数量消費者余剰生産者余剰価格上限死荷重
2025/4/28

経済学の問題集で、以下の10個の問いに答えます。 * Q1: ある工場で毎日70個の製品を生産し、製品の売上単価は15万円である。この工場の1日あたりの総収入$a$を求める。 * Q2: 前問...

経済学需要関数供給関数均衡価格消費者余剰生産者余剰死荷重
2025/4/28

経済学の問題集で、以下の10個の質問に答える必要があります。 * Q1: ある工場で70個の製品を生産し、1個あたりの売上単価が15万円の場合の1日の総収入 $a$ を求める。 * Q2: Q...

経済学需要関数供給関数均衡価格消費者余剰生産者余剰死荷重
2025/4/28

表に示された林業所得のデータを用いて、平成26年度の林業所得を予測する問題です。平成26年度の対前年度比減少率が、平成24年度から平成25年度の減少率と同じであると仮定した場合、平成26年度の林業所得...

割合計算予測データ分析
2025/4/28

表から、1999年から2009年の10年間で、国内総生産の成長率が最も大きい国をO, P, Q, R, Sの中から選ぶ問題です。国内総生産は億ドル単位で与えられています。

成長率経済指標割合
2025/4/28

グラフから10月の売上実績と予算達成率を読み取り、もし10月の売上が予算の120%を達成していたとしたら、売上実績がいくらになっていたかをおおよそで求める問題です。

グラフ売上割合計算
2025/4/28

上り列車と下り列車が線路上を走っている。線路には踏切があり、列車がA, B間またはC, D間を完全に通過しないと踏切は渡れない。上り列車がA地点に来た時、下り列車はC地点の360m先にいた。上り列車が...

速さ距離時間線形運動
2025/4/28

長さ180m、時速96kmの急行列車が、長さ220mのトンネルの入り口で貨物列車と出会いました。急行列車の最後尾がトンネルを出た時に、貨物列車の最後尾がトンネルに入りました。貨物列車の長さが350mの...

速度距離時間単位変換線形方程式
2025/4/28

鎌倉行きの急行列車が、長さ720mの鉄橋を渡るのに35秒かかり、駅のポールを通過するのに7秒かかった。この列車の長さを求める。

速度距離方程式線形方程式
2025/4/28