与えられた2つの命題の真偽を判定する問題です。 (1) 円周率 $\pi$ は有理数である。 (2) 実数 $-1$ について $(-1)^2 \geq 0$ である。
2025/4/29
1. 問題の内容
与えられた2つの命題の真偽を判定する問題です。
(1) 円周率 は有理数である。
(2) 実数 について である。
2. 解き方の手順
(1) 円周率 は無理数であることが知られています。有理数とは、2つの整数の比で表せる数のことです。 はそのような分数で表すことができないため、この命題は偽です。
(2) 実数 について、 を計算すると、
となります。 は真なので、この命題は真です。
3. 最終的な答え
(1) 偽
(2) 真