The problem asks us to calculate $cis(72^\circ)$. The notation $cis(\theta)$ is equivalent to $cos(\theta) + i \cdot sin(\theta)$. Therefore, we need to calculate $cos(72^\circ) + i \cdot sin(72^\circ)$.

AlgebraTrigonometryComplex NumbersCosineSineQuadratic Equations
2025/4/29

1. Problem Description

The problem asks us to calculate cis(72)cis(72^\circ). The notation cis(θ)cis(\theta) is equivalent to cos(θ)+isin(θ)cos(\theta) + i \cdot sin(\theta). Therefore, we need to calculate cos(72)+isin(72)cos(72^\circ) + i \cdot sin(72^\circ).

2. Solution Steps

We need to determine cos(72)cos(72^\circ) and sin(72)sin(72^\circ). Recall that 72=2π572^\circ = \frac{2\pi}{5} radians.
Let θ=72\theta = 72^\circ. Then 5θ=3605\theta = 360^\circ. Thus 2θ=3603θ2\theta = 360^\circ - 3\theta. Taking sine of both sides, we have
sin(2θ)=sin(3603θ)=sin(3θ)sin(2\theta) = sin(360^\circ - 3\theta) = -sin(3\theta).
Therefore, 2sin(θ)cos(θ)=3sin(θ)+4sin3(θ)2sin(\theta)cos(\theta) = -3sin(\theta) + 4sin^3(\theta).
Since sin(θ)0sin(\theta) \ne 0, we can divide both sides by sin(θ)sin(\theta) to get
2cos(θ)=3+4sin2(θ)=3+4(1cos2(θ))=3+44cos2(θ)=14cos2(θ)2cos(\theta) = -3 + 4sin^2(\theta) = -3 + 4(1-cos^2(\theta)) = -3 + 4 - 4cos^2(\theta) = 1 - 4cos^2(\theta).
So 4cos2(θ)+2cos(θ)1=04cos^2(\theta) + 2cos(\theta) - 1 = 0.
Let x=cos(θ)x = cos(\theta). Then 4x2+2x1=04x^2 + 2x - 1 = 0.
x=2±44(4)(1)8=2±208=2±258=1±54x = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8} = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4}.
Since cos(72)>0cos(72^\circ) > 0, we have cos(72)=1+54cos(72^\circ) = \frac{-1+\sqrt{5}}{4}.
Also, sin2(72)=1cos2(72)=1(1+54)2=1125+516=162516=166+2516=10+2516=5+58sin^2(72^\circ) = 1 - cos^2(72^\circ) = 1 - (\frac{-1+\sqrt{5}}{4})^2 = 1 - \frac{1 - 2\sqrt{5}+5}{16} = 1 - \frac{6 - 2\sqrt{5}}{16} = \frac{16 - 6 + 2\sqrt{5}}{16} = \frac{10+2\sqrt{5}}{16} = \frac{5+\sqrt{5}}{8}.
sin(72)=5+58=10+254sin(72^\circ) = \sqrt{\frac{5+\sqrt{5}}{8}} = \frac{\sqrt{10+2\sqrt{5}}}{4}.
Therefore, cis(72)=cos(72)+isin(72)=1+54+i10+254cis(72^\circ) = cos(72^\circ) + i \cdot sin(72^\circ) = \frac{-1+\sqrt{5}}{4} + i\frac{\sqrt{10+2\sqrt{5}}}{4}.

3. Final Answer

1+54+i10+254\frac{-1+\sqrt{5}}{4} + i\frac{\sqrt{10+2\sqrt{5}}}{4}

Related problems in "Algebra"

The problem asks to find the inverse of the function $f(x) = \frac{3x-1}{2x-6}$.

FunctionsInverse FunctionsAlgebraic Manipulation
2025/4/29

The problem asks us to simplify the expression $3x + 7x$.

SimplificationAlgebraic ExpressionsCombining Like Terms
2025/4/29

The problem provides a function $f(x) = \frac{1}{4} - (x - \frac{3}{2})^2$ and asks to: 1) Develop, ...

Quadratic FunctionsEquation SolvingAbsolute ValueSimplification
2025/4/29

The problem asks us to find the values of $m$ and $c$ in the equation $y = mx + c$ for the given lin...

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/4/29

Find the equation of the line that passes through the points $(-5, -3)$ and $(10, -6)$.

Linear EquationsSlope-Intercept FormCoordinate Geometry
2025/4/29

The problem is to solve the equation $\frac{x}{7} = 18$ for $x$.

Linear EquationsSolving EquationsVariables
2025/4/29

We are given that a line has an x-intercept of 5 and a y-intercept of 3. We need to find the equatio...

Linear EquationsInterceptsSlope-intercept formEquation of a line
2025/4/29

The problem requires us to solve the inequality $20 + 7x \le 34$ and graph the solution on the numbe...

InequalitiesLinear InequalitiesNumber LineGraphing
2025/4/28

The problem asks us to write the inequality in terms of $x$ that each of the given diagrams represen...

InequalitiesNumber LineGraphing Inequalities
2025/4/28

We are given two problems. (a) We are given a number line with a filled circle at -3 and an arrow po...

InequalitiesNumber LineSolving Inequalities
2025/4/28