Given that $\sin \alpha = \frac{1}{2}$ and $\alpha$ is in the second quadrant, find $\cos \alpha$ and $\tan \alpha$.

TrigonometryTrigonometrySineCosineTangentUnit CircleTrigonometric IdentitiesQuadrants
2025/3/19

1. Problem Description

Given that sinα=12\sin \alpha = \frac{1}{2} and α\alpha is in the second quadrant, find cosα\cos \alpha and tanα\tan \alpha.

2. Solution Steps

We know that sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1.
So,
cos2α=1sin2α\cos^2 \alpha = 1 - \sin^2 \alpha
cos2α=1(12)2=114=34\cos^2 \alpha = 1 - (\frac{1}{2})^2 = 1 - \frac{1}{4} = \frac{3}{4}
cosα=±34=±32\cos \alpha = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}.
Since α\alpha is in the second quadrant, cosα\cos \alpha is negative.
Therefore, cosα=32\cos \alpha = - \frac{\sqrt{3}}{2}.
Next, we want to find tanα\tan \alpha. We know that
tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}.
tanα=1232=12×23=13=33\tan \alpha = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{2} \times \frac{-2}{\sqrt{3}} = -\frac{1}{\sqrt{3}} = - \frac{\sqrt{3}}{3}.

3. Final Answer

cosα=32\cos \alpha = - \frac{\sqrt{3}}{2}
tanα=33\tan \alpha = - \frac{\sqrt{3}}{3}

Related problems in "Trigonometry"

We are asked to calculate $\sin(x + \frac{\pi}{6})$ given that $\sin(x) = \frac{4}{5}$ and $\frac{\p...

TrigonometryAngle Sum FormulaSine FunctionUnit Circle
2025/5/3

Simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesSimplificationDouble Angle FormulaCotangent
2025/5/3

We need to find the exact value of $\sin(\frac{3\pi}{4})$.

TrigonometrySine FunctionUnit CircleAngle CalculationReference Angle
2025/5/1

Determine the quadrant in which $\csc \theta > 0$ and $\sec \theta < 0$.

Trigonometric FunctionsQuadrantsSineCosineCosecantSecant
2025/5/1

We need to find the value of $sec(\frac{11\pi}{6})$.

TrigonometrySecant FunctionUnit CircleAngle ConversionReference Angle
2025/5/1

The problem asks us to analyze the graph of the function $y = \tan(\theta - \frac{\pi}{2})$. We are ...

Trigonometric FunctionsTangent FunctionGraphingPeriodAsymptotesTransformations
2025/4/30

We are given that $\sin 3y = \cos 2y$ and $0^{\circ} \le y \le 90^{\circ}$. We are asked to find the...

TrigonometryTrigonometric EquationsSineCosine
2025/4/29

We are given that $\tan x = 1$, where $0^\circ \le x \le 90^\circ$. We are asked to evaluate $\frac{...

TrigonometryTrigonometric IdentitiesTangent FunctionSine FunctionCosine FunctionAngle Evaluation
2025/4/29

Prove the following trigonometric identity: $\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \co...

Trigonometric IdentitiesTrigonometric EquationsProof
2025/4/29

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28