The problem is to evaluate the expression $\frac{1}{2} \cdot (-\frac{1}{2})^2 + \sqrt{\frac{1}{64}}$.

ArithmeticOrder of OperationsFractionsExponentsSquare Roots
2025/5/6

1. Problem Description

The problem is to evaluate the expression 12(12)2+164\frac{1}{2} \cdot (-\frac{1}{2})^2 + \sqrt{\frac{1}{64}}.

2. Solution Steps

First, evaluate (12)2(-\frac{1}{2})^2:
(12)2=(12)(12)=14(-\frac{1}{2})^2 = (-\frac{1}{2}) \cdot (-\frac{1}{2}) = \frac{1}{4}
Next, evaluate 12(14)\frac{1}{2} \cdot (\frac{1}{4}):
1214=18\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}
Then, evaluate 164\sqrt{\frac{1}{64}}:
164=164=18\sqrt{\frac{1}{64}} = \frac{\sqrt{1}}{\sqrt{64}} = \frac{1}{8}
Finally, add the two terms:
18+18=28=14\frac{1}{8} + \frac{1}{8} = \frac{2}{8} = \frac{1}{4}

3. Final Answer

14\frac{1}{4}

Related problems in "Arithmetic"