(a) Simplify the expression $3\frac{4}{9} \div (5\frac{1}{3} - 2\frac{3}{4}) + 5\frac{9}{10}$ without using calculators. (b) Given two sets {2, 3, 4} and {1, 3, 5}, find the probability that the sum of a number chosen randomly from each set is greater than 3 and less than 7.

ArithmeticFractionsArithmetic OperationsProbabilitySets
2025/5/8

1. Problem Description

(a) Simplify the expression 349÷(513234)+59103\frac{4}{9} \div (5\frac{1}{3} - 2\frac{3}{4}) + 5\frac{9}{10} without using calculators.
(b) Given two sets {2, 3, 4} and {1, 3, 5}, find the probability that the sum of a number chosen randomly from each set is greater than 3 and less than
7.

2. Solution Steps

(a) Simplifying the expression:
First, convert mixed fractions to improper fractions.
349=3×9+49=27+49=3193\frac{4}{9} = \frac{3 \times 9 + 4}{9} = \frac{27+4}{9} = \frac{31}{9}
513=5×3+13=15+13=1635\frac{1}{3} = \frac{5 \times 3 + 1}{3} = \frac{15+1}{3} = \frac{16}{3}
234=2×4+34=8+34=1142\frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{8+3}{4} = \frac{11}{4}
5910=5×10+910=50+910=59105\frac{9}{10} = \frac{5 \times 10 + 9}{10} = \frac{50+9}{10} = \frac{59}{10}
Now, substitute these values into the expression:
319÷(163114)+5910\frac{31}{9} \div (\frac{16}{3} - \frac{11}{4}) + \frac{59}{10}
Find a common denominator for 163\frac{16}{3} and 114\frac{11}{4}, which is
1

2. $\frac{16}{3} = \frac{16 \times 4}{3 \times 4} = \frac{64}{12}$

114=11×34×3=3312\frac{11}{4} = \frac{11 \times 3}{4 \times 3} = \frac{33}{12}
64123312=643312=3112\frac{64}{12} - \frac{33}{12} = \frac{64-33}{12} = \frac{31}{12}
So the expression becomes:
319÷3112+5910\frac{31}{9} \div \frac{31}{12} + \frac{59}{10}
To divide fractions, we multiply by the reciprocal:
319÷3112=319×1231=31×129×31=129=43\frac{31}{9} \div \frac{31}{12} = \frac{31}{9} \times \frac{12}{31} = \frac{31 \times 12}{9 \times 31} = \frac{12}{9} = \frac{4}{3}
The expression is now:
43+5910\frac{4}{3} + \frac{59}{10}
Find a common denominator for 43\frac{4}{3} and 5910\frac{59}{10}, which is
3

0. $\frac{4}{3} = \frac{4 \times 10}{3 \times 10} = \frac{40}{30}$

5910=59×310×3=17730\frac{59}{10} = \frac{59 \times 3}{10 \times 3} = \frac{177}{30}
4030+17730=40+17730=21730\frac{40}{30} + \frac{177}{30} = \frac{40+177}{30} = \frac{217}{30}
(b) Finding the probability:
The possible sums of numbers from the two sets are:
2+1=3
2+3=5
2+5=7
3+1=4
3+3=6
3+5=8
4+1=5
4+3=7
4+5=9
The sums that are greater than 3 and less than 7 are 4, 5, 5,

6. There are a total of 3 x 3 = 9 possible sums.

The sums that satisfy the condition are 4, 5, 5, and

6. Thus, there are 4 such sums.

The probability is 49\frac{4}{9}.

3. Final Answer

(a) 21730\frac{217}{30}
(b) 49\frac{4}{9}