The problem asks to evaluate the summation $\sum_{i=4}^{20} (2i - 5)$.

ArithmeticSummationSeriesArithmetic Series
2025/5/7

1. Problem Description

The problem asks to evaluate the summation i=420(2i5)\sum_{i=4}^{20} (2i - 5).

2. Solution Steps

We can split the summation into two separate summations:
i=420(2i5)=i=4202ii=4205\sum_{i=4}^{20} (2i - 5) = \sum_{i=4}^{20} 2i - \sum_{i=4}^{20} 5
We can factor out the constant 2 from the first summation:
=2i=420ii=4205= 2 \sum_{i=4}^{20} i - \sum_{i=4}^{20} 5
We can calculate the summation of ii from 4 to 20 using the formula for the sum of the first nn integers: i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
Thus,
i=420i=i=120ii=13i=20(20+1)23(3+1)2=20(21)23(4)2=10(21)3(2)=2106=204\sum_{i=4}^{20} i = \sum_{i=1}^{20} i - \sum_{i=1}^{3} i = \frac{20(20+1)}{2} - \frac{3(3+1)}{2} = \frac{20(21)}{2} - \frac{3(4)}{2} = 10(21) - 3(2) = 210 - 6 = 204.
So, 2i=420i=2(204)=4082 \sum_{i=4}^{20} i = 2(204) = 408.
The second summation is simply summing the constant 5 a total of 204+1=1720 - 4 + 1 = 17 times:
i=4205=5(204+1)=5(17)=85\sum_{i=4}^{20} 5 = 5(20 - 4 + 1) = 5(17) = 85.
Therefore, the original summation is:
i=420(2i5)=40885=323\sum_{i=4}^{20} (2i - 5) = 408 - 85 = 323.

3. Final Answer

323