First, we can split the summation into two parts:
∑i=620(2i−5)=∑i=6202i−∑i=6205 We can factor out the constant 2 from the first summation:
∑i=6202i=2∑i=620i The number of terms in the summation is 20−6+1=15. Therefore, ∑i=6205=5×15=75. To evaluate ∑i=620i, we can use the formula for the sum of the first n integers: ∑i=1ni=2n(n+1) We can rewrite the summation as follows:
∑i=620i=∑i=120i−∑i=15i Using the formula:
∑i=120i=220(20+1)=220×21=10×21=210 ∑i=15i=25(5+1)=25×6=5×3=15 So, ∑i=620i=210−15=195 Then, 2∑i=620i=2×195=390 Finally, ∑i=620(2i−5)=390−75=315