The problem asks to evaluate the summation $\sum_{i=6}^{20} (2i - 5)$.

ArithmeticSummationSeriesArithmetic SeriesSigma Notation
2025/5/7

1. Problem Description

The problem asks to evaluate the summation i=620(2i5)\sum_{i=6}^{20} (2i - 5).

2. Solution Steps

First, we can split the summation into two parts:
i=620(2i5)=i=6202ii=6205\sum_{i=6}^{20} (2i - 5) = \sum_{i=6}^{20} 2i - \sum_{i=6}^{20} 5
We can factor out the constant 2 from the first summation:
i=6202i=2i=620i\sum_{i=6}^{20} 2i = 2\sum_{i=6}^{20} i
The number of terms in the summation is 206+1=1520 - 6 + 1 = 15.
Therefore, i=6205=5×15=75\sum_{i=6}^{20} 5 = 5 \times 15 = 75.
To evaluate i=620i\sum_{i=6}^{20} i, we can use the formula for the sum of the first nn integers:
i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
We can rewrite the summation as follows:
i=620i=i=120ii=15i\sum_{i=6}^{20} i = \sum_{i=1}^{20} i - \sum_{i=1}^{5} i
Using the formula:
i=120i=20(20+1)2=20×212=10×21=210\sum_{i=1}^{20} i = \frac{20(20+1)}{2} = \frac{20 \times 21}{2} = 10 \times 21 = 210
i=15i=5(5+1)2=5×62=5×3=15\sum_{i=1}^{5} i = \frac{5(5+1)}{2} = \frac{5 \times 6}{2} = 5 \times 3 = 15
So, i=620i=21015=195\sum_{i=6}^{20} i = 210 - 15 = 195
Then, 2i=620i=2×195=3902\sum_{i=6}^{20} i = 2 \times 195 = 390
Finally, i=620(2i5)=39075=315\sum_{i=6}^{20} (2i - 5) = 390 - 75 = 315

3. Final Answer

315