We need to evaluate the sum $\sum_{i=4}^{20} (2i - 5)$.

ArithmeticSummationArithmetic SeriesSigma Notation
2025/5/7

1. Problem Description

We need to evaluate the sum i=420(2i5)\sum_{i=4}^{20} (2i - 5).

2. Solution Steps

The summation can be broken into two separate summations:
i=420(2i5)=i=4202ii=4205\sum_{i=4}^{20} (2i - 5) = \sum_{i=4}^{20} 2i - \sum_{i=4}^{20} 5
First, consider i=4202i=2i=420i\sum_{i=4}^{20} 2i = 2\sum_{i=4}^{20} i.
We can rewrite i=420i\sum_{i=4}^{20} i as i=120ii=13i\sum_{i=1}^{20} i - \sum_{i=1}^{3} i.
We know that i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
Therefore, i=120i=20(20+1)2=20(21)2=10(21)=210\sum_{i=1}^{20} i = \frac{20(20+1)}{2} = \frac{20(21)}{2} = 10(21) = 210
And, i=13i=3(3+1)2=3(4)2=6\sum_{i=1}^{3} i = \frac{3(3+1)}{2} = \frac{3(4)}{2} = 6.
So, i=420i=2106=204\sum_{i=4}^{20} i = 210 - 6 = 204.
Then, 2i=420i=2(204)=4082\sum_{i=4}^{20} i = 2(204) = 408.
Next, consider i=4205\sum_{i=4}^{20} 5.
Since 55 is a constant, we are adding 55 a total of 204+1=1720 - 4 + 1 = 17 times.
Therefore, i=4205=5(17)=85\sum_{i=4}^{20} 5 = 5(17) = 85.
Finally, i=420(2i5)=40885=323\sum_{i=4}^{20} (2i - 5) = 408 - 85 = 323.

3. Final Answer

323

Related problems in "Arithmetic"