The problem is to calculate the sum $\sum_{i=5}^{20} (2i + 5)$.

ArithmeticSummationSeriesArithmetic Series
2025/5/7

1. Problem Description

The problem is to calculate the sum i=520(2i+5)\sum_{i=5}^{20} (2i + 5).

2. Solution Steps

We can split the summation into two parts:
i=520(2i+5)=i=5202i+i=5205\sum_{i=5}^{20} (2i + 5) = \sum_{i=5}^{20} 2i + \sum_{i=5}^{20} 5.
The first summation can be written as 2i=520i2 \sum_{i=5}^{20} i.
The second summation is simply adding the constant 5 a total of 205+1=1620 - 5 + 1 = 16 times, so it equals 5×16=805 \times 16 = 80.
We can calculate i=520i\sum_{i=5}^{20} i using the formula for the sum of the first n integers:
i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
So, i=520i=i=120ii=14i=20(20+1)24(4+1)2=20×2124×52=10×212×5=21010=200\sum_{i=5}^{20} i = \sum_{i=1}^{20} i - \sum_{i=1}^{4} i = \frac{20(20+1)}{2} - \frac{4(4+1)}{2} = \frac{20 \times 21}{2} - \frac{4 \times 5}{2} = 10 \times 21 - 2 \times 5 = 210 - 10 = 200.
Therefore, 2i=520i=2×200=4002 \sum_{i=5}^{20} i = 2 \times 200 = 400.
Finally, i=520(2i+5)=400+80=480\sum_{i=5}^{20} (2i + 5) = 400 + 80 = 480.

3. Final Answer

480