The problem asks to express $\frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}}$ in the form $\frac{\sqrt{m}}{\sqrt{n}}$, where $m$ and $n$ are whole numbers.

AlgebraRadicalsRationalizationSimplificationAlgebraic Manipulation
2025/3/20

1. Problem Description

The problem asks to express 323232\frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} in the form mn\frac{\sqrt{m}}{\sqrt{n}}, where mm and nn are whole numbers.

2. Solution Steps

We have to rationalize the denominator of the given expression: 323232\frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}}.
To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is 23+22\sqrt{3} + \sqrt{2}:
\frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} \cdot \frac{2\sqrt{3} + \sqrt{2}}{2\sqrt{3} + \sqrt{2}} = \frac{(3\sqrt{2} - \sqrt{3})(2\sqrt{3} + \sqrt{2})}{(2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2})}
Expanding the numerator:
(3\sqrt{2})(2\sqrt{3}) + (3\sqrt{2})(\sqrt{2}) - (\sqrt{3})(2\sqrt{3}) - (\sqrt{3})(\sqrt{2}) = 6\sqrt{6} + 6 - 6 - \sqrt{6} = 5\sqrt{6}
Expanding the denominator (using the difference of squares formula (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2):
(2\sqrt{3})^2 - (\sqrt{2})^2 = 4(3) - 2 = 12 - 2 = 10
So the expression becomes:
\frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2}
Now we need to express this in the form mn\frac{\sqrt{m}}{\sqrt{n}}.
Since 2=42 = \sqrt{4}, we can rewrite the expression as:
\frac{\sqrt{6}}{\sqrt{4}}
We need to get the options provided in the form mn\frac{\sqrt{m}}{\sqrt{n}} and check if they equal to 62\frac{\sqrt{6}}{2} or 64\frac{\sqrt{6}}{\sqrt{4}}.
(a) 610\frac{\sqrt{6}}{\sqrt{10}}
(b) 150100=256100=5610=62\frac{\sqrt{150}}{\sqrt{100}} = \frac{\sqrt{25 \cdot 6}}{\sqrt{100}} = \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2}
(c) 2610\frac{2\sqrt{6}}{\sqrt{10}}
(d) 5610\frac{5\sqrt{6}}{\sqrt{10}}
The correct option is (b) because 150100=15010=5610=62=64\frac{\sqrt{150}}{\sqrt{100}} = \frac{\sqrt{150}}{10} = \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}}.

3. Final Answer

(b) 150100\frac{\sqrt{150}}{\sqrt{100}}

Related problems in "Algebra"

The problem asks us to simplify the algebraic expression $4b - 3(4 - 2b)$.

Algebraic simplificationLinear expressionsDistributionCombining like terms
2025/5/7

The problem asks us to analyze the given exponential function $y = 5 \cdot (\frac{1}{2})^x$ and grap...

Exponential FunctionsGraphingFunction Analysis
2025/5/7

The problem is to analyze the exponential function $y = 3 \cdot 2^x$. A graph is provided for refere...

Exponential FunctionsFunction AnalysisGraphs
2025/5/7

The problem asks to graph the function $f(x) = 3 \cdot (\frac{1}{2})^x$.

Exponential FunctionsGraphingFunction AnalysisExponential Decay
2025/5/7

The problem provides the exponential function $f(x) = 2 \cdot 3^x$. We are given a graph and are exp...

Exponential FunctionsGraphingFunction AnalysisAsymptotes
2025/5/7

We are asked to plot the function $f(x) = 4 \cdot (\frac{1}{2})^x$ on the provided graph.

Exponential FunctionsGraphing
2025/5/7

The problem shows the function $f(x) = 5 \cdot 2^x$ and an empty coordinate plane. The goal is to pl...

Exponential FunctionsFunction EvaluationGraphing
2025/5/7

We are given the function $f(x) = 3 \cdot 2^x$.

Exponential FunctionsFunction Definition
2025/5/7

We are given a system of two equations with two variables, $x$ and $y$: $x + y = 1$ $y = x^2 + 1$ We...

Systems of EquationsQuadratic EquationsSubstitutionSolving Equations
2025/5/7

We need to evaluate the sum $\sum_{i=4}^{20} (2i - 5)$.

SummationSeriesArithmetic Series
2025/5/7