The problem is to evaluate the infinite sum $\sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+1})$.

AnalysisInfinite SeriesTelescoping SeriesLimitsSummation
2025/3/7

1. Problem Description

The problem is to evaluate the infinite sum k=1(1k1k+1)\sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+1}).

2. Solution Steps

This is a telescoping series. Let SnS_n be the nn-th partial sum of the series.
Sn=k=1n(1k1k+1)S_n = \sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+1} \right)
Sn=(1112)+(1213)+(1314)++(1n1n+1)S_n = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \cdots + \left( \frac{1}{n} - \frac{1}{n+1} \right)
The intermediate terms cancel out, so we are left with:
Sn=11n+1S_n = 1 - \frac{1}{n+1}
The infinite sum is the limit of the partial sums as nn approaches infinity:
k=1(1k1k+1)=limnSn=limn(11n+1)\sum_{k=1}^{\infty} \left( \frac{1}{k} - \frac{1}{k+1} \right) = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 1 - \frac{1}{n+1} \right)
Since limn1n+1=0\lim_{n \to \infty} \frac{1}{n+1} = 0, we have:
limn(11n+1)=10=1\lim_{n \to \infty} \left( 1 - \frac{1}{n+1} \right) = 1 - 0 = 1

3. Final Answer

1

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1