The problem asks us to evaluate the definite integral $\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, dx$ using the properties of integrals, given that $\int_1^2 \frac{1}{x^2} \, dx = \frac{1}{2}$ and $\int_1^2 \frac{1}{x^3} \, dx = \frac{3}{8}$.

AnalysisDefinite IntegralsIntegrationProperties of Integrals
2025/5/10

1. Problem Description

The problem asks us to evaluate the definite integral 12(1x21x3)dx\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, dx using the properties of integrals, given that 121x2dx=12\int_1^2 \frac{1}{x^2} \, dx = \frac{1}{2} and 121x3dx=38\int_1^2 \frac{1}{x^3} \, dx = \frac{3}{8}.

2. Solution Steps

We can use the property of linearity of integrals, which states that the integral of a difference of two functions is the difference of their integrals:
ab[f(x)g(x)]dx=abf(x)dxabg(x)dx\int_a^b [f(x) - g(x)] \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx
In our case, f(x)=1x2f(x) = \frac{1}{x^2} and g(x)=1x3g(x) = \frac{1}{x^3}, a=1a = 1, and b=2b = 2. Therefore,
12(1x21x3)dx=121x2dx121x3dx\int_1^2 \left(\frac{1}{x^2} - \frac{1}{x^3}\right) \, dx = \int_1^2 \frac{1}{x^2} \, dx - \int_1^2 \frac{1}{x^3} \, dx
We are given that 121x2dx=12\int_1^2 \frac{1}{x^2} \, dx = \frac{1}{2} and 121x3dx=38\int_1^2 \frac{1}{x^3} \, dx = \frac{3}{8}.
Substituting these values into the equation, we get:
12(1x21x3)dx=1238\int_1^2 \left(\frac{1}{x^2} - \frac{1}{x^3}\right) \, dx = \frac{1}{2} - \frac{3}{8}
To subtract the fractions, we need a common denominator, which is

8. So, we rewrite $\frac{1}{2}$ as $\frac{4}{8}$:

12(1x21x3)dx=4838=438=18\int_1^2 \left(\frac{1}{x^2} - \frac{1}{x^3}\right) \, dx = \frac{4}{8} - \frac{3}{8} = \frac{4-3}{8} = \frac{1}{8}

3. Final Answer

The value of the definite integral is 18\frac{1}{8}.

Related problems in "Analysis"

We need to find the correct solution for the integral $\int x^2 \sin x \, dx$.

IntegrationIntegration by PartsDefinite Integral
2025/5/10

Given the function $f(x) = e^x + (5)^x$, we need to find the value of its derivative at $x=0$, i.e.,...

CalculusDerivativesExponential Functions
2025/5/10

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

CalculusIntegrationImproper IntegralsConvergenceDivergence
2025/5/10

The problem asks to find the derivative of the function $f(x) = \text{sech}^{-1}(2x)$ at $x = 0.1$.

CalculusDerivativesInverse Hyperbolic FunctionsDifferentiation
2025/5/10

The problem asks us to find the correct trigonometric substitution to evaluate the integral $\int \s...

IntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/5/10

We need to find the area of the shaded region enclosed by the curves $y = 2x^2 + 2$ and $y = 2x + 6$...

Area between curvesDefinite integralQuadratic equations
2025/5/10

We are given that $f(x) \ge 0$ for $a \le x \le b$, and that $\int_a^b f(x) \, dx \ge (k+4+3)$. We w...

Definite IntegralsInequalitiesCalculus
2025/5/10

The problem asks us to find the overestimate of the area under the curve $f(x) = x^3$ on the interva...

CalculusDefinite IntegralsRiemann SumsApproximation
2025/5/10

We are given that $(2 + 4x^2) \le f(x)$. We need to find a correct estimate for the integral $\int_0...

IntegrationInequalitiesDefinite IntegralsCalculus
2025/5/10

The problem asks us to identify which of the given integral formulas best resembles the integral $3 ...

IntegrationExponential FunctionsIntegral Formulas
2025/5/10