The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\infty} \frac{1}{\sqrt[5]{x}} dx$ B. $\int_{0}^{1} x^{-2} dx$ C. $\int_{0}^{\infty} \frac{1}{x+5} dx$ D. $\int_{3}^{5} \frac{1}{\sqrt{x-3}} dx$

AnalysisCalculusIntegrationImproper IntegralsConvergenceDivergence
2025/5/10

1. Problem Description

The problem asks us to identify which of the given improper integrals converges.
A. 11x5dx\int_{1}^{\infty} \frac{1}{\sqrt[5]{x}} dx
B. 01x2dx\int_{0}^{1} x^{-2} dx
C. 01x+5dx\int_{0}^{\infty} \frac{1}{x+5} dx
D. 351x3dx\int_{3}^{5} \frac{1}{\sqrt{x-3}} dx

2. Solution Steps

We need to evaluate each integral to determine if it converges or diverges.
A. 11x5dx=1x15dx\int_{1}^{\infty} \frac{1}{\sqrt[5]{x}} dx = \int_{1}^{\infty} x^{-\frac{1}{5}} dx
This is an improper integral of the form 1xpdx\int_{1}^{\infty} x^{-p} dx, which converges if p>1p > 1 and diverges if p1p \leq 1. Here, p=15<1p = \frac{1}{5} < 1, so the integral diverges.
B. 01x2dx=lima0+a1x2dx=lima0+[x1]a1=lima0+[1+1a]\int_{0}^{1} x^{-2} dx = \lim_{a \to 0^{+}} \int_{a}^{1} x^{-2} dx = \lim_{a \to 0^{+}} [-x^{-1}]_{a}^{1} = \lim_{a \to 0^{+}} [-1 + \frac{1}{a}]
Since lima0+1a=\lim_{a \to 0^{+}} \frac{1}{a} = \infty, the integral diverges.
C. 01x+5dx=limb0b1x+5dx=limb[lnx+5]0b=limb[ln(b+5)ln(5)]\int_{0}^{\infty} \frac{1}{x+5} dx = \lim_{b \to \infty} \int_{0}^{b} \frac{1}{x+5} dx = \lim_{b \to \infty} [\ln|x+5|]_{0}^{b} = \lim_{b \to \infty} [\ln(b+5) - \ln(5)]
Since limbln(b+5)=\lim_{b \to \infty} \ln(b+5) = \infty, the integral diverges.
D. 351x3dx=lima3+a51x3dx=lima3+a5(x3)12dx\int_{3}^{5} \frac{1}{\sqrt{x-3}} dx = \lim_{a \to 3^{+}} \int_{a}^{5} \frac{1}{\sqrt{x-3}} dx = \lim_{a \to 3^{+}} \int_{a}^{5} (x-3)^{-\frac{1}{2}} dx
=lima3+[2x3]a5=lima3+[2532a3]=lima3+[222a3]=2220=22= \lim_{a \to 3^{+}} [2\sqrt{x-3}]_{a}^{5} = \lim_{a \to 3^{+}} [2\sqrt{5-3} - 2\sqrt{a-3}] = \lim_{a \to 3^{+}} [2\sqrt{2} - 2\sqrt{a-3}] = 2\sqrt{2} - 2\sqrt{0} = 2\sqrt{2}
The integral converges to 222\sqrt{2}.

3. Final Answer

D

Related problems in "Analysis"

We need to find the correct solution for the integral $\int x^2 \sin x \, dx$.

IntegrationIntegration by PartsDefinite Integral
2025/5/10

Given the function $f(x) = e^x + (5)^x$, we need to find the value of its derivative at $x=0$, i.e.,...

CalculusDerivativesExponential Functions
2025/5/10

The problem asks to find the derivative of the function $f(x) = \text{sech}^{-1}(2x)$ at $x = 0.1$.

CalculusDerivativesInverse Hyperbolic FunctionsDifferentiation
2025/5/10

The problem asks us to find the correct trigonometric substitution to evaluate the integral $\int \s...

IntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/5/10

We need to find the area of the shaded region enclosed by the curves $y = 2x^2 + 2$ and $y = 2x + 6$...

Area between curvesDefinite integralQuadratic equations
2025/5/10

The problem asks us to evaluate the definite integral $\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, d...

Definite IntegralsIntegrationProperties of Integrals
2025/5/10

We are given that $f(x) \ge 0$ for $a \le x \le b$, and that $\int_a^b f(x) \, dx \ge (k+4+3)$. We w...

Definite IntegralsInequalitiesCalculus
2025/5/10

The problem asks us to find the overestimate of the area under the curve $f(x) = x^3$ on the interva...

CalculusDefinite IntegralsRiemann SumsApproximation
2025/5/10

We are given that $(2 + 4x^2) \le f(x)$. We need to find a correct estimate for the integral $\int_0...

IntegrationInequalitiesDefinite IntegralsCalculus
2025/5/10

The problem asks us to identify which of the given integral formulas best resembles the integral $3 ...

IntegrationExponential FunctionsIntegral Formulas
2025/5/10