The problem asks us to find the correct trigonometric substitution to evaluate the integral $\int \sqrt{121 - x^2} dx$.

AnalysisIntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/5/10

1. Problem Description

The problem asks us to find the correct trigonometric substitution to evaluate the integral 121x2dx\int \sqrt{121 - x^2} dx.

2. Solution Steps

We want to choose a substitution of the form x=asinθx = a \sin \theta such that 121x2121 - x^2 simplifies to a perfect square.
If we choose x=11sinθx = 11 \sin \theta, then x2=121sin2θx^2 = 121 \sin^2 \theta.
Substituting this into the expression under the square root gives us:
121x2=121121sin2θ=121(1sin2θ)121 - x^2 = 121 - 121 \sin^2 \theta = 121 (1 - \sin^2 \theta).
Using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we can rewrite 1sin2θ1 - \sin^2 \theta as cos2θ\cos^2 \theta.
So, 121x2=121cos2θ121 - x^2 = 121 \cos^2 \theta.
Then, 121x2=121cos2θ=11cosθ\sqrt{121 - x^2} = \sqrt{121 \cos^2 \theta} = 11 |\cos \theta|.
This is a reasonable simplification that leads to a solvable integral.
Now, let's check the other options.
If x=11sinθx = \sqrt{11} \sin \theta, then x2=11sin2θx^2 = 11 \sin^2 \theta. So, 121x2=12111sin2θ=11(11sin2θ)121 - x^2 = 121 - 11 \sin^2 \theta = 11 (11 - \sin^2 \theta). This doesn't simplify to a perfect square.
If x=121sinθx = 121 \sin \theta, then x2=1212sin2θx^2 = 121^2 \sin^2 \theta. So, 121x2=1211212sin2θ=121(1121sin2θ)121 - x^2 = 121 - 121^2 \sin^2 \theta = 121 (1 - 121 \sin^2 \theta). This doesn't simplify to a perfect square.
If x=21cosθx = 21 \cos \theta, then x2=441cos2θx^2 = 441 \cos^2 \theta. So, 121x2=121441cos2θ121 - x^2 = 121 - 441 \cos^2 \theta. This doesn't simplify to a perfect square.
The most appropriate substitution is x=11sinθx = 11 \sin \theta.

3. Final Answer

A. x=11sinθx = 11 \sin \theta

Related problems in "Analysis"

We need to find the correct solution for the integral $\int x^2 \sin x \, dx$.

IntegrationIntegration by PartsDefinite Integral
2025/5/10

Given the function $f(x) = e^x + (5)^x$, we need to find the value of its derivative at $x=0$, i.e.,...

CalculusDerivativesExponential Functions
2025/5/10

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

CalculusIntegrationImproper IntegralsConvergenceDivergence
2025/5/10

The problem asks to find the derivative of the function $f(x) = \text{sech}^{-1}(2x)$ at $x = 0.1$.

CalculusDerivativesInverse Hyperbolic FunctionsDifferentiation
2025/5/10

We need to find the area of the shaded region enclosed by the curves $y = 2x^2 + 2$ and $y = 2x + 6$...

Area between curvesDefinite integralQuadratic equations
2025/5/10

The problem asks us to evaluate the definite integral $\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, d...

Definite IntegralsIntegrationProperties of Integrals
2025/5/10

We are given that $f(x) \ge 0$ for $a \le x \le b$, and that $\int_a^b f(x) \, dx \ge (k+4+3)$. We w...

Definite IntegralsInequalitiesCalculus
2025/5/10

The problem asks us to find the overestimate of the area under the curve $f(x) = x^3$ on the interva...

CalculusDefinite IntegralsRiemann SumsApproximation
2025/5/10

We are given that $(2 + 4x^2) \le f(x)$. We need to find a correct estimate for the integral $\int_0...

IntegrationInequalitiesDefinite IntegralsCalculus
2025/5/10

The problem asks us to identify which of the given integral formulas best resembles the integral $3 ...

IntegrationExponential FunctionsIntegral Formulas
2025/5/10