We need to find the area of the shaded region enclosed by the curves $y = 2x^2 + 2$ and $y = 2x + 6$.

AnalysisArea between curvesDefinite integralQuadratic equations
2025/5/10

1. Problem Description

We need to find the area of the shaded region enclosed by the curves y=2x2+2y = 2x^2 + 2 and y=2x+6y = 2x + 6.

2. Solution Steps

First, we need to find the intersection points of the two curves. To do this, we set the two equations equal to each other:
2x2+2=2x+62x^2 + 2 = 2x + 6
2x22x4=02x^2 - 2x - 4 = 0
x2x2=0x^2 - x - 2 = 0
(x2)(x+1)=0(x - 2)(x + 1) = 0
So, the intersection points are x=1x = -1 and x=2x = 2.
The area of the shaded region is given by the integral of the difference between the two functions, from the lower limit to the upper limit:
Area=12(2x+6(2x2+2))dxArea = \int_{-1}^{2} (2x + 6 - (2x^2 + 2)) dx
Area=12(2x+62x22)dxArea = \int_{-1}^{2} (2x + 6 - 2x^2 - 2) dx
Area=12(2x2+2x+4)dxArea = \int_{-1}^{2} (-2x^2 + 2x + 4) dx
Now, we find the antiderivative:
Area=[23x3+x2+4x]12Area = [-\frac{2}{3}x^3 + x^2 + 4x]_{-1}^{2}
Area=(23(2)3+(2)2+4(2))(23(1)3+(1)2+4(1))Area = (-\frac{2}{3}(2)^3 + (2)^2 + 4(2)) - (-\frac{2}{3}(-1)^3 + (-1)^2 + 4(-1))
Area=(163+4+8)(23+14)Area = (-\frac{16}{3} + 4 + 8) - (\frac{2}{3} + 1 - 4)
Area=(163+12)(233)Area = (-\frac{16}{3} + 12) - (\frac{2}{3} - 3)
Area=(163+363)(2393)Area = (-\frac{16}{3} + \frac{36}{3}) - (\frac{2}{3} - \frac{9}{3})
Area=203(73)Area = \frac{20}{3} - (-\frac{7}{3})
Area=203+73Area = \frac{20}{3} + \frac{7}{3}
Area=273Area = \frac{27}{3}
Area=9Area = 9

3. Final Answer

The area of the shaded region is 9.

Related problems in "Analysis"

We need to find the correct solution for the integral $\int x^2 \sin x \, dx$.

IntegrationIntegration by PartsDefinite Integral
2025/5/10

Given the function $f(x) = e^x + (5)^x$, we need to find the value of its derivative at $x=0$, i.e.,...

CalculusDerivativesExponential Functions
2025/5/10

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

CalculusIntegrationImproper IntegralsConvergenceDivergence
2025/5/10

The problem asks to find the derivative of the function $f(x) = \text{sech}^{-1}(2x)$ at $x = 0.1$.

CalculusDerivativesInverse Hyperbolic FunctionsDifferentiation
2025/5/10

The problem asks us to find the correct trigonometric substitution to evaluate the integral $\int \s...

IntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/5/10

The problem asks us to evaluate the definite integral $\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, d...

Definite IntegralsIntegrationProperties of Integrals
2025/5/10

We are given that $f(x) \ge 0$ for $a \le x \le b$, and that $\int_a^b f(x) \, dx \ge (k+4+3)$. We w...

Definite IntegralsInequalitiesCalculus
2025/5/10

The problem asks us to find the overestimate of the area under the curve $f(x) = x^3$ on the interva...

CalculusDefinite IntegralsRiemann SumsApproximation
2025/5/10

We are given that $(2 + 4x^2) \le f(x)$. We need to find a correct estimate for the integral $\int_0...

IntegrationInequalitiesDefinite IntegralsCalculus
2025/5/10

The problem asks us to identify which of the given integral formulas best resembles the integral $3 ...

IntegrationExponential FunctionsIntegral Formulas
2025/5/10