The problem asks to show that $x - 2i$ is a factor of the polynomial $f(x) = x^4 + 6x + 8$.

AlgebraPolynomialsComplex NumbersFactor TheoremRoots of Polynomials
2025/5/11

1. Problem Description

The problem asks to show that x2ix - 2i is a factor of the polynomial f(x)=x4+6x+8f(x) = x^4 + 6x + 8.

2. Solution Steps

To show that x2ix - 2i is a factor of f(x)f(x), we need to show that f(2i)=0f(2i) = 0.
f(x)=x4+6x+8f(x) = x^4 + 6x + 8
Substitute x=2ix = 2i into the polynomial:
f(2i)=(2i)4+6(2i)+8f(2i) = (2i)^4 + 6(2i) + 8
f(2i)=(24)(i4)+12i+8f(2i) = (2^4)(i^4) + 12i + 8
Since i2=1i^2 = -1, then i4=(i2)2=(1)2=1i^4 = (i^2)^2 = (-1)^2 = 1.
f(2i)=16(1)+12i+8f(2i) = 16(1) + 12i + 8
f(2i)=16+12i+8f(2i) = 16 + 12i + 8
f(2i)=24+12if(2i) = 24 + 12i
Since f(2i)=24+12i0f(2i) = 24 + 12i \neq 0, then x2ix - 2i is not a factor of f(x)=x4+6x+8f(x) = x^4 + 6x + 8.
However, if f(x)=x4+14x2+25f(x) = x^4 + 14x^2 + 25, and we need to prove that x2ix-2i is a factor. Then
f(2i)=(2i)4+14(2i)2+25f(2i) = (2i)^4 + 14(2i)^2 + 25
f(2i)=16i4+14(4i2)+25f(2i) = 16i^4 + 14(4i^2) + 25
f(2i)=16(1)+56(1)+25f(2i) = 16(1) + 56(-1) + 25
f(2i)=1656+25f(2i) = 16 - 56 + 25
f(2i)=4156f(2i) = 41 - 56
f(2i)=150f(2i) = -15 \neq 0
x2ix - 2i is not a factor of f(x)=x4+14x2+25f(x) = x^4 + 14x^2 + 25.
There may be a typo in the problem. Let's try a different polynomial.
Let f(x)=x4+4x2+4f(x) = x^4 + 4x^2 + 4. Then
f(2i)=(2i)4+4(2i)2+4f(2i) = (2i)^4 + 4(2i)^2 + 4
f(2i)=16i4+4(4i2)+4f(2i) = 16i^4 + 4(4i^2) + 4
f(2i)=16(1)+16(1)+4f(2i) = 16(1) + 16(-1) + 4
f(2i)=1616+4=40f(2i) = 16 - 16 + 4 = 4 \neq 0.
Let's consider the conjugate x+2ix + 2i. If x2ix-2i is a factor, x+2ix+2i should also be a factor (because the coefficients of the polynomial are real numbers). So (x2i)(x+2i)=x2+4(x-2i)(x+2i) = x^2 + 4 should be a factor.
Let's perform polynomial long division to see if this is a factor.
(x4+6x+8)/(x2+4)(x^4 + 6x + 8) / (x^2 + 4)
x4+0x3+0x2+6x+8=(x2+4)(x24)+6x+24x^4 + 0x^3 + 0x^2 + 6x + 8 = (x^2 + 4)(x^2 - 4) + 6x + 24
So x2+4x^2+4 is not a factor of f(x)=x4+6x+8f(x) = x^4 + 6x + 8.

3. Final Answer

x2ix-2i is not a factor of f(x)=x4+6x+8f(x) = x^4 + 6x + 8.
f(2i)=24+12if(2i) = 24 + 12i.