We need to solve two inequalities involving square roots. (g) $\sqrt{2x+5} < \sqrt{9+x}$ (h) $\sqrt{x+3} + \sqrt{x+7} > 4$

AlgebraInequalitiesSquare RootsAlgebraic Manipulation
2025/5/11

1. Problem Description

We need to solve two inequalities involving square roots.
(g) 2x+5<9+x\sqrt{2x+5} < \sqrt{9+x}
(h) x+3+x+7>4\sqrt{x+3} + \sqrt{x+7} > 4

2. Solution Steps

(g) 2x+5<9+x\sqrt{2x+5} < \sqrt{9+x}
First, we need to ensure that the expressions under the square roots are non-negative. Thus, we have:
2x+50    x522x+5 \ge 0 \implies x \ge -\frac{5}{2}
9+x0    x99+x \ge 0 \implies x \ge -9
So, we have x52x \ge -\frac{5}{2}.
Now, square both sides of the inequality:
(2x+5)2<(9+x)2(\sqrt{2x+5})^2 < (\sqrt{9+x})^2
2x+5<9+x2x+5 < 9+x
2xx<952x-x < 9-5
x<4x < 4
Combining the two conditions, we have 52x<4-\frac{5}{2} \le x < 4.
(h) x+3+x+7>4\sqrt{x+3} + \sqrt{x+7} > 4
First, we need to ensure that the expressions under the square roots are non-negative. Thus, we have:
x+30    x3x+3 \ge 0 \implies x \ge -3
x+70    x7x+7 \ge 0 \implies x \ge -7
So, we have x3x \ge -3.
Now, isolate one of the square roots:
x+7>4x+3\sqrt{x+7} > 4 - \sqrt{x+3}
We consider two cases:
Case 1: 4x+3<04 - \sqrt{x+3} < 0, which means x+3>4\sqrt{x+3} > 4.
x+3>16x+3 > 16
x>13x > 13
Since x+7\sqrt{x+7} is always positive, x+7>4x+3\sqrt{x+7} > 4 - \sqrt{x+3} always holds for x>13x > 13.
Case 2: 4x+304 - \sqrt{x+3} \ge 0, which means x+34\sqrt{x+3} \le 4, or x+316x+3 \le 16, so x13x \le 13. Since x3x \ge -3, we have 3x13-3 \le x \le 13.
Square both sides of the inequality:
(x+7)2>(4x+3)2(\sqrt{x+7})^2 > (4 - \sqrt{x+3})^2
x+7>168x+3+x+3x+7 > 16 - 8\sqrt{x+3} + x+3
x+7>x+198x+3x+7 > x+19 - 8\sqrt{x+3}
8x+3>128\sqrt{x+3} > 12
x+3>128=32\sqrt{x+3} > \frac{12}{8} = \frac{3}{2}
x+3>94x+3 > \frac{9}{4}
x>943=9124=34x > \frac{9}{4} - 3 = \frac{9-12}{4} = -\frac{3}{4}
Combining with 3x13-3 \le x \le 13, we have 34<x13-\frac{3}{4} < x \le 13.
Combining Case 1 and Case 2, we have x>34x > -\frac{3}{4}.

3. Final Answer

(g) 52x<4-\frac{5}{2} \le x < 4
(h) x>34x > -\frac{3}{4}