The problem asks us to identify which ordered pairs satisfy the given linear equation: $y = -\frac{5}{6}x + \frac{2}{3}$.

AlgebraLinear EquationsCoordinate GeometryOrdered PairsEquation Verification
2025/5/12

1. Problem Description

The problem asks us to identify which ordered pairs satisfy the given linear equation: y=56x+23y = -\frac{5}{6}x + \frac{2}{3}.

2. Solution Steps

The equation given is y=56x+23y = -\frac{5}{6}x + \frac{2}{3}. To check if a point (x,y)(x, y) lies on the graph of the equation, we substitute the xx and yy values into the equation and see if the equation holds true.
* (4,7)(4, 7): 7=56(4)+23=206+46=166=837 = -\frac{5}{6}(4) + \frac{2}{3} = -\frac{20}{6} + \frac{4}{6} = -\frac{16}{6} = -\frac{8}{3}. 7837 \ne -\frac{8}{3}, so (4,7)(4, 7) is not on the graph.
* (3,3)(3, -3): 3=56(3)+23=156+46=116-3 = -\frac{5}{6}(3) + \frac{2}{3} = -\frac{15}{6} + \frac{4}{6} = -\frac{11}{6}. 3116-3 \ne -\frac{11}{6}, so (3,3)(3, -3) is not on the graph.
* (2,1)(2, -1): 1=56(2)+23=106+46=66=1-1 = -\frac{5}{6}(2) + \frac{2}{3} = -\frac{10}{6} + \frac{4}{6} = -\frac{6}{6} = -1. 1=1-1 = -1, so (2,1)(2, -1) is on the graph.
* (4,4)(-4, 4): 4=56(4)+23=206+46=246=44 = -\frac{5}{6}(-4) + \frac{2}{3} = \frac{20}{6} + \frac{4}{6} = \frac{24}{6} = 4. 4=44 = 4, so (4,4)(-4, 4) is on the graph.
* (6,2)(-6, -2): 2=56(6)+23=5+23=153+23=173-2 = -\frac{5}{6}(-6) + \frac{2}{3} = 5 + \frac{2}{3} = \frac{15}{3} + \frac{2}{3} = \frac{17}{3}. 2173-2 \ne \frac{17}{3}, so (6,2)(-6, -2) is not on the graph.
* (3,5)(-3, -5): 5=56(3)+23=156+46=196-5 = -\frac{5}{6}(-3) + \frac{2}{3} = \frac{15}{6} + \frac{4}{6} = \frac{19}{6}. 5196-5 \ne \frac{19}{6}, so (3,5)(-3, -5) is not on the graph.

3. Final Answer

(2, -1), (-4, 4)