The problem seems to ask to find the derivative of the function $y = f(x) = \ln(x + \sqrt{1+x^2})$.

AnalysisCalculusDifferentiationChain RuleLogarithmic FunctionsDerivatives
2025/5/13

1. Problem Description

The problem seems to ask to find the derivative of the function y=f(x)=ln(x+1+x2)y = f(x) = \ln(x + \sqrt{1+x^2}).

2. Solution Steps

To find the derivative of y=ln(x+1+x2)y = \ln(x + \sqrt{1+x^2}), we can use the chain rule.
Let u=x+1+x2u = x + \sqrt{1+x^2}. Then y=ln(u)y = \ln(u).
dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
dydu=1u=1x+1+x2\frac{dy}{du} = \frac{1}{u} = \frac{1}{x + \sqrt{1+x^2}}
Now, we need to find dudx\frac{du}{dx}.
u=x+1+x2u = x + \sqrt{1+x^2}
dudx=ddx(x)+ddx(1+x2)\frac{du}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(\sqrt{1+x^2})
ddx(x)=1\frac{d}{dx}(x) = 1
Let v=1+x2v = 1+x^2. Then 1+x2=v=v1/2\sqrt{1+x^2} = \sqrt{v} = v^{1/2}.
ddx(1+x2)=ddv(v1/2)dvdx\frac{d}{dx}(\sqrt{1+x^2}) = \frac{d}{dv}(v^{1/2}) \cdot \frac{dv}{dx}
ddv(v1/2)=12v1/2=12v=121+x2\frac{d}{dv}(v^{1/2}) = \frac{1}{2}v^{-1/2} = \frac{1}{2\sqrt{v}} = \frac{1}{2\sqrt{1+x^2}}
dvdx=ddx(1+x2)=2x\frac{dv}{dx} = \frac{d}{dx}(1+x^2) = 2x
So, ddx(1+x2)=121+x22x=x1+x2\frac{d}{dx}(\sqrt{1+x^2}) = \frac{1}{2\sqrt{1+x^2}} \cdot 2x = \frac{x}{\sqrt{1+x^2}}
Therefore, dudx=1+x1+x2=1+x2+x1+x2\frac{du}{dx} = 1 + \frac{x}{\sqrt{1+x^2}} = \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2}}
Now, we can find dydx\frac{dy}{dx}:
dydx=dydududx=1x+1+x2x+1+x21+x2=11+x2\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{x + \sqrt{1+x^2}} \cdot \frac{x + \sqrt{1+x^2}}{\sqrt{1+x^2}} = \frac{1}{\sqrt{1+x^2}}

3. Final Answer

dydx=11+x2\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}

Related problems in "Analysis"

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13

The image appears to present several math problems related to limits, derivatives, and inequalities....

LimitsDerivativesInequalitiesFunction AnalysisCalculus
2025/5/13

The problem asks us to evaluate the definite integral: $A(R) = \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} ...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/5/12

Given the function $g(x) = 3x^4 - 2x^2 + 49$, we need to find the first and second derivatives, $g'(...

CalculusDerivativesFirst DerivativeSecond DerivativeSign AnalysisPolynomial Functions
2025/5/12

The problem asks us to evaluate the definite integral of the polynomial $x^2 - 3x + 5$ from $2$ to $...

Definite IntegralIntegrationPolynomialCalculus
2025/5/12

The problem asks us to evaluate the definite integral of $x^2 - 3x$ from 1 to 2, and subtract from t...

Definite IntegralIntegrationCalculus
2025/5/12

The problem asks to evaluate the definite integral $\int_{1}^{2} (x^2 - 3x) \, dx + \int_{1}^{2} (x^...

Definite IntegralIntegrationCalculus
2025/5/12

We are asked to evaluate the definite integral $\int_{-1}^{3} (5x^2 - x - 4) dx$.

Definite IntegralIntegrationPower RuleAntiderivative
2025/5/12