Let's evaluate the integrals separately and then add them up.
First Integral:
∫ − 3 1 ( 4 − 4 − 4 y 2 − y + 3 4 ) d y = ∫ − 3 1 ( 2 − 4 − 4 y 2 − y 4 − 3 4 ) d y \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} - \frac{y+3}{4}) dy = \int_{-3}^1 (2 - \frac{\sqrt{4-4y}}{2} - \frac{y}{4} - \frac{3}{4}) dy ∫ − 3 1 ( 2 4 − 4 − 4 y − 4 y + 3 ) d y = ∫ − 3 1 ( 2 − 2 4 − 4 y − 4 y − 4 3 ) d y = ∫ − 3 1 ( 5 4 − y 4 − 4 − 4 y 2 ) d y = ∫ − 3 1 5 4 d y − ∫ − 3 1 y 4 d y − ∫ − 3 1 4 − 4 y 2 d y = \int_{-3}^1 (\frac{5}{4} - \frac{y}{4} - \frac{\sqrt{4-4y}}{2}) dy = \int_{-3}^1 \frac{5}{4}dy - \int_{-3}^1 \frac{y}{4}dy - \int_{-3}^1 \frac{\sqrt{4-4y}}{2}dy = ∫ − 3 1 ( 4 5 − 4 y − 2 4 − 4 y ) d y = ∫ − 3 1 4 5 d y − ∫ − 3 1 4 y d y − ∫ − 3 1 2 4 − 4 y d y
We evaluate the integrals one by one:
∫ − 3 1 5 4 d y = 5 4 y ∣ − 3 1 = 5 4 ( 1 − ( − 3 ) ) = 5 4 ( 4 ) = 5 \int_{-3}^1 \frac{5}{4} dy = \frac{5}{4}y|_{-3}^1 = \frac{5}{4}(1-(-3)) = \frac{5}{4}(4) = 5 ∫ − 3 1 4 5 d y = 4 5 y ∣ − 3 1 = 4 5 ( 1 − ( − 3 )) = 4 5 ( 4 ) = 5 ∫ − 3 1 y 4 d y = 1 4 ∫ − 3 1 y d y = 1 4 ⋅ y 2 2 ∣ − 3 1 = 1 8 ( 1 2 − ( − 3 ) 2 ) = 1 8 ( 1 − 9 ) = − 8 8 = − 1 \int_{-3}^1 \frac{y}{4} dy = \frac{1}{4} \int_{-3}^1 y dy = \frac{1}{4} \cdot \frac{y^2}{2}|_{-3}^1 = \frac{1}{8} (1^2 - (-3)^2) = \frac{1}{8}(1-9) = \frac{-8}{8} = -1 ∫ − 3 1 4 y d y = 4 1 ∫ − 3 1 y d y = 4 1 ⋅ 2 y 2 ∣ − 3 1 = 8 1 ( 1 2 − ( − 3 ) 2 ) = 8 1 ( 1 − 9 ) = 8 − 8 = − 1 ∫ − 3 1 4 − 4 y 2 d y = 1 2 ∫ − 3 1 4 − 4 y d y \int_{-3}^1 \frac{\sqrt{4-4y}}{2} dy = \frac{1}{2} \int_{-3}^1 \sqrt{4-4y} dy ∫ − 3 1 2 4 − 4 y d y = 2 1 ∫ − 3 1 4 − 4 y d y Let u = 4 − 4 y u = 4-4y u = 4 − 4 y . Then d u = − 4 d y du = -4 dy d u = − 4 d y , so d y = − 1 4 d u dy = -\frac{1}{4}du d y = − 4 1 d u . When y = − 3 y=-3 y = − 3 , u = 4 − 4 ( − 3 ) = 4 + 12 = 16 u = 4-4(-3) = 4+12=16 u = 4 − 4 ( − 3 ) = 4 + 12 = 16 . When y = 1 y=1 y = 1 , u = 4 − 4 ( 1 ) = 0 u = 4-4(1)=0 u = 4 − 4 ( 1 ) = 0 . 1 2 ∫ 16 0 u ( − 1 4 ) d u = − 1 8 ∫ 16 0 u 1 / 2 d u = 1 8 ∫ 0 16 u 1 / 2 d u = 1 8 [ u 3 / 2 3 / 2 ] 0 16 = 1 8 ⋅ 2 3 [ u 3 / 2 ] 0 16 = 1 12 [ 16 3 / 2 − 0 3 / 2 ] = 1 12 ( 16 1 / 2 ) 3 = 1 12 ( 4 3 ) = 64 12 = 16 3 \frac{1}{2} \int_{16}^0 \sqrt{u} (-\frac{1}{4}) du = -\frac{1}{8} \int_{16}^0 u^{1/2} du = \frac{1}{8} \int_{0}^{16} u^{1/2} du = \frac{1}{8} [\frac{u^{3/2}}{3/2}]_0^{16} = \frac{1}{8} \cdot \frac{2}{3} [u^{3/2}]_0^{16} = \frac{1}{12} [16^{3/2} - 0^{3/2}] = \frac{1}{12} (16^{1/2})^3 = \frac{1}{12} (4^3) = \frac{64}{12} = \frac{16}{3} 2 1 ∫ 16 0 u ( − 4 1 ) d u = − 8 1 ∫ 16 0 u 1/2 d u = 8 1 ∫ 0 16 u 1/2 d u = 8 1 [ 3/2 u 3/2 ] 0 16 = 8 1 ⋅ 3 2 [ u 3/2 ] 0 16 = 12 1 [ 1 6 3/2 − 0 3/2 ] = 12 1 ( 1 6 1/2 ) 3 = 12 1 ( 4 3 ) = 12 64 = 3 16
Therefore, the first integral is 5 − ( − 1 ) − 16 3 = 6 − 16 3 = 18 − 16 3 = 2 3 5 - (-1) - \frac{16}{3} = 6 - \frac{16}{3} = \frac{18-16}{3} = \frac{2}{3} 5 − ( − 1 ) − 3 16 = 6 − 3 16 = 3 18 − 16 = 3 2 .
Second Integral:
∫ 0 1 ( 6 − y 2 − 4 + 4 − 4 y 2 ) d y = ∫ 0 1 ( 6 − y − 4 − 4 − 4 y 2 ) d y = ∫ 0 1 ( 2 − y − 4 − 4 y 2 ) d y \int_{0}^1 (\frac{6-y}{2} - \frac{4+\sqrt{4-4y}}{2}) dy = \int_{0}^1 (\frac{6-y-4-\sqrt{4-4y}}{2}) dy = \int_{0}^1 (\frac{2-y-\sqrt{4-4y}}{2}) dy ∫ 0 1 ( 2 6 − y − 2 4 + 4 − 4 y ) d y = ∫ 0 1 ( 2 6 − y − 4 − 4 − 4 y ) d y = ∫ 0 1 ( 2 2 − y − 4 − 4 y ) d y = ∫ 0 1 ( 1 − y 2 − 4 − 4 y 2 ) d y = ∫ 0 1 1 d y − ∫ 0 1 y 2 d y − ∫ 0 1 4 − 4 y 2 d y = \int_{0}^1 (1 - \frac{y}{2} - \frac{\sqrt{4-4y}}{2}) dy = \int_{0}^1 1 dy - \int_{0}^1 \frac{y}{2} dy - \int_{0}^1 \frac{\sqrt{4-4y}}{2} dy = ∫ 0 1 ( 1 − 2 y − 2 4 − 4 y ) d y = ∫ 0 1 1 d y − ∫ 0 1 2 y d y − ∫ 0 1 2 4 − 4 y d y
We evaluate the integrals one by one:
∫ 0 1 1 d y = y ∣ 0 1 = 1 − 0 = 1 \int_{0}^1 1 dy = y|_0^1 = 1 - 0 = 1 ∫ 0 1 1 d y = y ∣ 0 1 = 1 − 0 = 1 ∫ 0 1 y 2 d y = 1 2 ∫ 0 1 y d y = 1 2 [ y 2 2 ] 0 1 = 1 4 [ 1 2 − 0 2 ] = 1 4 \int_{0}^1 \frac{y}{2} dy = \frac{1}{2} \int_{0}^1 y dy = \frac{1}{2} [\frac{y^2}{2}]_0^1 = \frac{1}{4} [1^2 - 0^2] = \frac{1}{4} ∫ 0 1 2 y d y = 2 1 ∫ 0 1 y d y = 2 1 [ 2 y 2 ] 0 1 = 4 1 [ 1 2 − 0 2 ] = 4 1 ∫ 0 1 4 − 4 y 2 d y \int_{0}^1 \frac{\sqrt{4-4y}}{2} dy ∫ 0 1 2 4 − 4 y d y Let u = 4 − 4 y u = 4-4y u = 4 − 4 y . Then d u = − 4 d y du = -4 dy d u = − 4 d y , so d y = − 1 4 d u dy = -\frac{1}{4}du d y = − 4 1 d u . When y = 0 y=0 y = 0 , u = 4 − 4 ( 0 ) = 4 u = 4-4(0) = 4 u = 4 − 4 ( 0 ) = 4 . When y = 1 y=1 y = 1 , u = 4 − 4 ( 1 ) = 0 u = 4-4(1)=0 u = 4 − 4 ( 1 ) = 0 . 1 2 ∫ 4 0 u ( − 1 4 ) d u = − 1 8 ∫ 4 0 u 1 / 2 d u = 1 8 ∫ 0 4 u 1 / 2 d u = 1 8 [ u 3 / 2 3 / 2 ] 0 4 = 1 8 ⋅ 2 3 [ u 3 / 2 ] 0 4 = 1 12 [ 4 3 / 2 − 0 3 / 2 ] = 1 12 ( 4 1 / 2 ) 3 = 1 12 ( 2 3 ) = 8 12 = 2 3 \frac{1}{2} \int_{4}^0 \sqrt{u} (-\frac{1}{4}) du = -\frac{1}{8} \int_{4}^0 u^{1/2} du = \frac{1}{8} \int_{0}^{4} u^{1/2} du = \frac{1}{8} [\frac{u^{3/2}}{3/2}]_0^4 = \frac{1}{8} \cdot \frac{2}{3} [u^{3/2}]_0^4 = \frac{1}{12} [4^{3/2} - 0^{3/2}] = \frac{1}{12} (4^{1/2})^3 = \frac{1}{12} (2^3) = \frac{8}{12} = \frac{2}{3} 2 1 ∫ 4 0 u ( − 4 1 ) d u = − 8 1 ∫ 4 0 u 1/2 d u = 8 1 ∫ 0 4 u 1/2 d u = 8 1 [ 3/2 u 3/2 ] 0 4 = 8 1 ⋅ 3 2 [ u 3/2 ] 0 4 = 12 1 [ 4 3/2 − 0 3/2 ] = 12 1 ( 4 1/2 ) 3 = 12 1 ( 2 3 ) = 12 8 = 3 2
Therefore, the second integral is 1 − 1 4 − 2 3 = 12 − 3 − 8 12 = 1 12 1 - \frac{1}{4} - \frac{2}{3} = \frac{12 - 3 - 8}{12} = \frac{1}{12} 1 − 4 1 − 3 2 = 12 12 − 3 − 8 = 12 1 .
Third Integral:
∫ 1 3 ( 6 − y 2 − y + 3 4 ) d y = ∫ 1 3 ( 12 − 2 y − y − 3 4 ) d y = ∫ 1 3 ( 9 − 3 y 4 ) d y = ∫ 1 3 9 4 d y − ∫ 1 3 3 y 4 d y \int_{1}^3 (\frac{6-y}{2} - \frac{y+3}{4}) dy = \int_{1}^3 (\frac{12-2y-y-3}{4}) dy = \int_{1}^3 (\frac{9-3y}{4}) dy = \int_{1}^3 \frac{9}{4} dy - \int_{1}^3 \frac{3y}{4} dy ∫ 1 3 ( 2 6 − y − 4 y + 3 ) d y = ∫ 1 3 ( 4 12 − 2 y − y − 3 ) d y = ∫ 1 3 ( 4 9 − 3 y ) d y = ∫ 1 3 4 9 d y − ∫ 1 3 4 3 y d y = 9 4 ∫ 1 3 d y − 3 4 ∫ 1 3 y d y = 9 4 [ y ] 1 3 − 3 4 [ y 2 2 ] 1 3 = 9 4 ( 3 − 1 ) − 3 4 ( 9 − 1 2 ) = 9 4 ( 2 ) − 3 4 ( 8 2 ) = 18 4 − 3 4 ( 4 ) = 18 4 − 12 4 = 6 4 = 3 2 = \frac{9}{4} \int_{1}^3 dy - \frac{3}{4} \int_{1}^3 y dy = \frac{9}{4} [y]_1^3 - \frac{3}{4} [\frac{y^2}{2}]_1^3 = \frac{9}{4}(3-1) - \frac{3}{4} (\frac{9-1}{2}) = \frac{9}{4}(2) - \frac{3}{4}(\frac{8}{2}) = \frac{18}{4} - \frac{3}{4}(4) = \frac{18}{4} - \frac{12}{4} = \frac{6}{4} = \frac{3}{2} = 4 9 ∫ 1 3 d y − 4 3 ∫ 1 3 y d y = 4 9 [ y ] 1 3 − 4 3 [ 2 y 2 ] 1 3 = 4 9 ( 3 − 1 ) − 4 3 ( 2 9 − 1 ) = 4 9 ( 2 ) − 4 3 ( 2 8 ) = 4 18 − 4 3 ( 4 ) = 4 18 − 4 12 = 4 6 = 2 3 .
Adding the integrals:
A ( R ) = 2 3 + 1 12 + 3 2 = 8 + 1 + 18 12 = 27 12 = 9 4 A(R) = \frac{2}{3} + \frac{1}{12} + \frac{3}{2} = \frac{8+1+18}{12} = \frac{27}{12} = \frac{9}{4} A ( R ) = 3 2 + 12 1 + 2 3 = 12 8 + 1 + 18 = 12 27 = 4 9