The problem asks us to evaluate the definite integral: $A(R) = \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} - \frac{y+3}{4}) dy + \int_{0}^1 (\frac{6-y}{2} - \frac{4+\sqrt{4-4y}}{2}) dy + \int_{1}^3 (\frac{6-y}{2} - \frac{y+3}{4}) dy$

AnalysisDefinite IntegralIntegration TechniquesSubstitutionCalculus
2025/5/12

1. Problem Description

The problem asks us to evaluate the definite integral:
A(R)=31(444y2y+34)dy+01(6y24+44y2)dy+13(6y2y+34)dyA(R) = \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} - \frac{y+3}{4}) dy + \int_{0}^1 (\frac{6-y}{2} - \frac{4+\sqrt{4-4y}}{2}) dy + \int_{1}^3 (\frac{6-y}{2} - \frac{y+3}{4}) dy

2. Solution Steps

Let's evaluate the integrals separately and then add them up.
First Integral:
31(444y2y+34)dy=31(244y2y434)dy\int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} - \frac{y+3}{4}) dy = \int_{-3}^1 (2 - \frac{\sqrt{4-4y}}{2} - \frac{y}{4} - \frac{3}{4}) dy
=31(54y444y2)dy=3154dy31y4dy3144y2dy= \int_{-3}^1 (\frac{5}{4} - \frac{y}{4} - \frac{\sqrt{4-4y}}{2}) dy = \int_{-3}^1 \frac{5}{4}dy - \int_{-3}^1 \frac{y}{4}dy - \int_{-3}^1 \frac{\sqrt{4-4y}}{2}dy
We evaluate the integrals one by one:
3154dy=54y31=54(1(3))=54(4)=5\int_{-3}^1 \frac{5}{4} dy = \frac{5}{4}y|_{-3}^1 = \frac{5}{4}(1-(-3)) = \frac{5}{4}(4) = 5
31y4dy=1431ydy=14y2231=18(12(3)2)=18(19)=88=1\int_{-3}^1 \frac{y}{4} dy = \frac{1}{4} \int_{-3}^1 y dy = \frac{1}{4} \cdot \frac{y^2}{2}|_{-3}^1 = \frac{1}{8} (1^2 - (-3)^2) = \frac{1}{8}(1-9) = \frac{-8}{8} = -1
3144y2dy=123144ydy\int_{-3}^1 \frac{\sqrt{4-4y}}{2} dy = \frac{1}{2} \int_{-3}^1 \sqrt{4-4y} dy
Let u=44yu = 4-4y. Then du=4dydu = -4 dy, so dy=14dudy = -\frac{1}{4}du. When y=3y=-3, u=44(3)=4+12=16u = 4-4(-3) = 4+12=16. When y=1y=1, u=44(1)=0u = 4-4(1)=0.
12160u(14)du=18160u1/2du=18016u1/2du=18[u3/23/2]016=1823[u3/2]016=112[163/203/2]=112(161/2)3=112(43)=6412=163\frac{1}{2} \int_{16}^0 \sqrt{u} (-\frac{1}{4}) du = -\frac{1}{8} \int_{16}^0 u^{1/2} du = \frac{1}{8} \int_{0}^{16} u^{1/2} du = \frac{1}{8} [\frac{u^{3/2}}{3/2}]_0^{16} = \frac{1}{8} \cdot \frac{2}{3} [u^{3/2}]_0^{16} = \frac{1}{12} [16^{3/2} - 0^{3/2}] = \frac{1}{12} (16^{1/2})^3 = \frac{1}{12} (4^3) = \frac{64}{12} = \frac{16}{3}
Therefore, the first integral is 5(1)163=6163=18163=235 - (-1) - \frac{16}{3} = 6 - \frac{16}{3} = \frac{18-16}{3} = \frac{2}{3}.
Second Integral:
01(6y24+44y2)dy=01(6y444y2)dy=01(2y44y2)dy\int_{0}^1 (\frac{6-y}{2} - \frac{4+\sqrt{4-4y}}{2}) dy = \int_{0}^1 (\frac{6-y-4-\sqrt{4-4y}}{2}) dy = \int_{0}^1 (\frac{2-y-\sqrt{4-4y}}{2}) dy
=01(1y244y2)dy=011dy01y2dy0144y2dy= \int_{0}^1 (1 - \frac{y}{2} - \frac{\sqrt{4-4y}}{2}) dy = \int_{0}^1 1 dy - \int_{0}^1 \frac{y}{2} dy - \int_{0}^1 \frac{\sqrt{4-4y}}{2} dy
We evaluate the integrals one by one:
011dy=y01=10=1\int_{0}^1 1 dy = y|_0^1 = 1 - 0 = 1
01y2dy=1201ydy=12[y22]01=14[1202]=14\int_{0}^1 \frac{y}{2} dy = \frac{1}{2} \int_{0}^1 y dy = \frac{1}{2} [\frac{y^2}{2}]_0^1 = \frac{1}{4} [1^2 - 0^2] = \frac{1}{4}
0144y2dy\int_{0}^1 \frac{\sqrt{4-4y}}{2} dy
Let u=44yu = 4-4y. Then du=4dydu = -4 dy, so dy=14dudy = -\frac{1}{4}du. When y=0y=0, u=44(0)=4u = 4-4(0) = 4. When y=1y=1, u=44(1)=0u = 4-4(1)=0.
1240u(14)du=1840u1/2du=1804u1/2du=18[u3/23/2]04=1823[u3/2]04=112[43/203/2]=112(41/2)3=112(23)=812=23\frac{1}{2} \int_{4}^0 \sqrt{u} (-\frac{1}{4}) du = -\frac{1}{8} \int_{4}^0 u^{1/2} du = \frac{1}{8} \int_{0}^{4} u^{1/2} du = \frac{1}{8} [\frac{u^{3/2}}{3/2}]_0^4 = \frac{1}{8} \cdot \frac{2}{3} [u^{3/2}]_0^4 = \frac{1}{12} [4^{3/2} - 0^{3/2}] = \frac{1}{12} (4^{1/2})^3 = \frac{1}{12} (2^3) = \frac{8}{12} = \frac{2}{3}
Therefore, the second integral is 11423=123812=1121 - \frac{1}{4} - \frac{2}{3} = \frac{12 - 3 - 8}{12} = \frac{1}{12}.
Third Integral:
13(6y2y+34)dy=13(122yy34)dy=13(93y4)dy=1394dy133y4dy\int_{1}^3 (\frac{6-y}{2} - \frac{y+3}{4}) dy = \int_{1}^3 (\frac{12-2y-y-3}{4}) dy = \int_{1}^3 (\frac{9-3y}{4}) dy = \int_{1}^3 \frac{9}{4} dy - \int_{1}^3 \frac{3y}{4} dy
=9413dy3413ydy=94[y]1334[y22]13=94(31)34(912)=94(2)34(82)=18434(4)=184124=64=32= \frac{9}{4} \int_{1}^3 dy - \frac{3}{4} \int_{1}^3 y dy = \frac{9}{4} [y]_1^3 - \frac{3}{4} [\frac{y^2}{2}]_1^3 = \frac{9}{4}(3-1) - \frac{3}{4} (\frac{9-1}{2}) = \frac{9}{4}(2) - \frac{3}{4}(\frac{8}{2}) = \frac{18}{4} - \frac{3}{4}(4) = \frac{18}{4} - \frac{12}{4} = \frac{6}{4} = \frac{3}{2}.
Adding the integrals:
A(R)=23+112+32=8+1+1812=2712=94A(R) = \frac{2}{3} + \frac{1}{12} + \frac{3}{2} = \frac{8+1+18}{12} = \frac{27}{12} = \frac{9}{4}

3. Final Answer

94\frac{9}{4}

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13