The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2L$. The Fourier series expansion of $f(x)$ is given as: $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L}))$ The task is to prove that the Fourier coefficient $b_n$ is given by: $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx$

AnalysisFourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

1. Problem Description

The problem states that a function f(x)f(x) is defined in an open interval (L,L)(-L, L) and has period 2L2L. The Fourier series expansion of f(x)f(x) is given as:
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L}))
The task is to prove that the Fourier coefficient bnb_n is given by:
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx

2. Solution Steps

To find the coefficient bnb_n, we can multiply both sides of the Fourier series by sin(mπxL)\sin(\frac{m \pi x}{L}) and integrate from L-L to LL.
LLf(x)sin(mπxL)dx=LL(a02+n=1(ancos(nπxL)+bnsin(nπxL)))sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \int_{-L}^{L} (\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L}))) \sin(\frac{m \pi x}{L}) dx
Now, we can split the integral:
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+n=1LLancos(nπxL)sin(mπxL)dx+n=1LLbnsin(nπxL)sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \int_{-L}^{L} \frac{a_0}{2} \sin(\frac{m \pi x}{L}) dx + \sum_{n=1}^{\infty} \int_{-L}^{L} a_n \cos(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx + \sum_{n=1}^{\infty} \int_{-L}^{L} b_n \sin(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx
Since sin(mπxL)\sin(\frac{m \pi x}{L}) is an odd function and we are integrating from L-L to LL, the first term is zero:
LLa02sin(mπxL)dx=0\int_{-L}^{L} \frac{a_0}{2} \sin(\frac{m \pi x}{L}) dx = 0
The second term is also zero. This is because the integral of the product of cosine and sine over a period is zero:
LLcos(nπxL)sin(mπxL)dx=0\int_{-L}^{L} \cos(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx = 0
The third term simplifies due to the orthogonality of sine functions:
$\int_{-L}^{L} \sin(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx =
\begin{cases}
0 & \text{if } n \neq m \\
L & \text{if } n = m
\end{cases}$
Therefore, the equation becomes:
LLf(x)sin(mπxL)dx=n=1bnLLsin(nπxL)sin(mπxL)dx=bmL\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \sum_{n=1}^{\infty} b_n \int_{-L}^{L} \sin(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx = b_m L
Dividing both sides by LL:
bm=1LLLf(x)sin(mπxL)dxb_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx
Replacing mm with nn:
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx

3. Final Answer

bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13