We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{cases} x+3 & \text{if } -1 \leq x \leq 0 \\ -x+3 & \text{if } 0 < x \leq 3 \\ x-3 & \text{if } 3 < x \leq 5 \end{cases}$ and $g(x) = \begin{cases} -\frac{1}{2}x + \frac{3}{2} & \text{if } -1 \leq x \leq 1 \\ -\frac{1}{4}x + \frac{5}{4} & \text{if } 1 < x \leq 5 \end{cases}$ We need to: 1) Plot the functions $f$ and $g$ separately. 2) Calculate the integrals $I = \int_{-1}^{5} f(x) dx$ and $J = \int_{-1}^{5} g(x) dx$. 3) Deduce the integrals $\int_{-1}^{5} (f(x) + 4g(x)) dx$ and $\int_{-1}^{5} (5f(x) - 2g(x)) dx$.

AnalysisDefinite IntegralsPiecewise FunctionsIntegration
2025/5/13

1. Problem Description

We are given the functions ff and gg defined on the interval [1,5][-1, 5] as follows:
f(x)={x+3if 1x0x+3if 0<x3x3if 3<x5f(x) = \begin{cases} x+3 & \text{if } -1 \leq x \leq 0 \\ -x+3 & \text{if } 0 < x \leq 3 \\ x-3 & \text{if } 3 < x \leq 5 \end{cases}
and
g(x)={12x+32if 1x114x+54if 1<x5g(x) = \begin{cases} -\frac{1}{2}x + \frac{3}{2} & \text{if } -1 \leq x \leq 1 \\ -\frac{1}{4}x + \frac{5}{4} & \text{if } 1 < x \leq 5 \end{cases}
We need to:
1) Plot the functions ff and gg separately.
2) Calculate the integrals I=15f(x)dxI = \int_{-1}^{5} f(x) dx and J=15g(x)dxJ = \int_{-1}^{5} g(x) dx.
3) Deduce the integrals 15(f(x)+4g(x))dx\int_{-1}^{5} (f(x) + 4g(x)) dx and 15(5f(x)2g(x))dx\int_{-1}^{5} (5f(x) - 2g(x)) dx.

2. Solution Steps

1) Plotting the functions ff and gg is not possible here.
2) Calculating the integrals II and JJ:
I=15f(x)dx=10(x+3)dx+03(x+3)dx+35(x3)dxI = \int_{-1}^{5} f(x) dx = \int_{-1}^{0} (x+3) dx + \int_{0}^{3} (-x+3) dx + \int_{3}^{5} (x-3) dx
I=[x22+3x]10+[x22+3x]03+[x223x]35I = \left[\frac{x^2}{2} + 3x\right]_{-1}^{0} + \left[-\frac{x^2}{2} + 3x\right]_{0}^{3} + \left[\frac{x^2}{2} - 3x\right]_{3}^{5}
I=(0(123))+(92+90)+(25215(929))I = (0 - (\frac{1}{2} - 3)) + (-\frac{9}{2} + 9 - 0) + (\frac{25}{2} - 15 - (\frac{9}{2} - 9))
I=(0(52))+(92)+(2521592+9)I = (0 - (-\frac{5}{2})) + (\frac{9}{2}) + (\frac{25}{2} - 15 - \frac{9}{2} + 9)
I=52+92+1626I = \frac{5}{2} + \frac{9}{2} + \frac{16}{2} - 6
I=3026=156=9I = \frac{30}{2} - 6 = 15 - 6 = 9
J=15g(x)dx=11(12x+32)dx+15(14x+54)dxJ = \int_{-1}^{5} g(x) dx = \int_{-1}^{1} (-\frac{1}{2}x + \frac{3}{2}) dx + \int_{1}^{5} (-\frac{1}{4}x + \frac{5}{4}) dx
J=[14x2+32x]11+[18x2+54x]15J = \left[-\frac{1}{4}x^2 + \frac{3}{2}x\right]_{-1}^{1} + \left[-\frac{1}{8}x^2 + \frac{5}{4}x\right]_{1}^{5}
J=(14+32)(1432)+(258+254)(18+54)J = (-\frac{1}{4} + \frac{3}{2}) - (-\frac{1}{4} - \frac{3}{2}) + (-\frac{25}{8} + \frac{25}{4}) - (-\frac{1}{8} + \frac{5}{4})
J=14+32+14+32258+508+18108J = -\frac{1}{4} + \frac{3}{2} + \frac{1}{4} + \frac{3}{2} - \frac{25}{8} + \frac{50}{8} + \frac{1}{8} - \frac{10}{8}
J=3+26898=3+178=24+178=418=5.125J = 3 + \frac{26}{8} - \frac{9}{8} = 3 + \frac{17}{8} = \frac{24 + 17}{8} = \frac{41}{8} = 5.125
3) Deducing the integrals:
15(f(x)+4g(x))dx=15f(x)dx+415g(x)dx=I+4J=9+4(418)=9+412=18+412=592=29.5\int_{-1}^{5} (f(x) + 4g(x)) dx = \int_{-1}^{5} f(x) dx + 4 \int_{-1}^{5} g(x) dx = I + 4J = 9 + 4(\frac{41}{8}) = 9 + \frac{41}{2} = \frac{18 + 41}{2} = \frac{59}{2} = 29.5
15(5f(x)2g(x))dx=515f(x)dx215g(x)dx=5I2J=5(9)2(418)=45414=180414=1394=34.75\int_{-1}^{5} (5f(x) - 2g(x)) dx = 5 \int_{-1}^{5} f(x) dx - 2 \int_{-1}^{5} g(x) dx = 5I - 2J = 5(9) - 2(\frac{41}{8}) = 45 - \frac{41}{4} = \frac{180 - 41}{4} = \frac{139}{4} = 34.75

3. Final Answer

I=15f(x)dx=9I = \int_{-1}^{5} f(x) dx = 9
J=15g(x)dx=418=5.125J = \int_{-1}^{5} g(x) dx = \frac{41}{8} = 5.125
15(f(x)+4g(x))dx=592=29.5\int_{-1}^{5} (f(x) + 4g(x)) dx = \frac{59}{2} = 29.5
15(5f(x)2g(x))dx=1394=34.75\int_{-1}^{5} (5f(x) - 2g(x)) dx = \frac{139}{4} = 34.75

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13