We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{cases} x+3 & \text{if } -1 \leq x \leq 0 \\ -x+3 & \text{if } 0 < x \leq 3 \\ x-3 & \text{if } 3 < x \leq 5 \end{cases}$ and $g(x) = \begin{cases} -\frac{1}{2}x + \frac{3}{2} & \text{if } -1 \leq x \leq 1 \\ -\frac{1}{4}x + \frac{5}{4} & \text{if } 1 < x \leq 5 \end{cases}$ We need to: 1) Plot the functions $f$ and $g$ separately. 2) Calculate the integrals $I = \int_{-1}^{5} f(x) dx$ and $J = \int_{-1}^{5} g(x) dx$. 3) Deduce the integrals $\int_{-1}^{5} (f(x) + 4g(x)) dx$ and $\int_{-1}^{5} (5f(x) - 2g(x)) dx$.
2025/5/13
1. Problem Description
We are given the functions and defined on the interval as follows:
and
We need to:
1) Plot the functions and separately.
2) Calculate the integrals and .
3) Deduce the integrals and .
2. Solution Steps
1) Plotting the functions and is not possible here.
2) Calculating the integrals and :
3) Deducing the integrals: