The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $f(x)$ defined on the interval $[-L, L]$. The formula is given as: $b_n = \frac{1}{L}\int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$.

AnalysisFourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

1. Problem Description

The problem asks to prove the formula for the Fourier sine series coefficient bnb_n for a function f(x)f(x) defined on the interval [L,L][-L, L]. The formula is given as:
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L}\int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx.

2. Solution Steps

The formula for the Fourier series of a function f(x)f(x) defined on the interval [L,L][-L, L] is given by:
f(x)=a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L})].
To find the coefficient bnb_n, we multiply both sides of the equation by sin(mπxL)\sin(\frac{m\pi x}{L}), where mm is an integer, and integrate from L-L to LL:
LLf(x)sin(mπxL)dx=LL[a02+n=1[ancos(nπxL)+bnsin(nπxL)]]sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = \int_{-L}^{L} [\frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L})]] \sin(\frac{m\pi x}{L}) dx
We can split the integral on the right-hand side:
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+n=1[LLancos(nπxL)sin(mπxL)dx+LLbnsin(nπxL)sin(mπxL)dx]\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = \int_{-L}^{L} \frac{a_0}{2} \sin(\frac{m\pi x}{L}) dx + \sum_{n=1}^{\infty} [\int_{-L}^{L} a_n \cos(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx + \int_{-L}^{L} b_n \sin(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx]
Now we use the following orthogonality properties of sine and cosine functions:
LLsin(nπxL)dx=0\int_{-L}^{L} \sin(\frac{n\pi x}{L}) dx = 0
LLcos(nπxL)sin(mπxL)dx=0\int_{-L}^{L} \cos(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = 0
LLsin(nπxL)sin(mπxL)dx={0,if nmL,if n=m\int_{-L}^{L} \sin(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = \begin{cases} 0, & \text{if } n \neq m \\ L, & \text{if } n = m \end{cases}
Using these properties, the first two integrals on the right-hand side become zero.
So we have:
LLf(x)sin(mπxL)dx=n=1bnLLsin(nπxL)sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = \sum_{n=1}^{\infty} b_n \int_{-L}^{L} \sin(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx
When nmn \neq m, the integral is zero. When n=mn = m, the integral is LL. Therefore, the summation reduces to a single term where n=mn = m:
LLf(x)sin(mπxL)dx=bmL\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = b_m L
Dividing both sides by LL, we get:
bm=1LLLf(x)sin(mπxL)dxb_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx
Replacing mm with nn, we obtain the desired formula:
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx

3. Final Answer

bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L}\int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13