The formula for the Fourier series of a function f(x) defined on the interval [−L,L] is given by: f(x)=2a0+∑n=1∞[ancos(Lnπx)+bnsin(Lnπx)]. To find the coefficient bn, we multiply both sides of the equation by sin(Lmπx), where m is an integer, and integrate from −L to L: ∫−LLf(x)sin(Lmπx)dx=∫−LL[2a0+∑n=1∞[ancos(Lnπx)+bnsin(Lnπx)]]sin(Lmπx)dx We can split the integral on the right-hand side:
∫−LLf(x)sin(Lmπx)dx=∫−LL2a0sin(Lmπx)dx+∑n=1∞[∫−LLancos(Lnπx)sin(Lmπx)dx+∫−LLbnsin(Lnπx)sin(Lmπx)dx] Now we use the following orthogonality properties of sine and cosine functions:
∫−LLsin(Lnπx)dx=0 ∫−LLcos(Lnπx)sin(Lmπx)dx=0 ∫−LLsin(Lnπx)sin(Lmπx)dx={0,L,if n=mif n=m Using these properties, the first two integrals on the right-hand side become zero.
So we have:
∫−LLf(x)sin(Lmπx)dx=∑n=1∞bn∫−LLsin(Lnπx)sin(Lmπx)dx When n=m, the integral is zero. When n=m, the integral is L. Therefore, the summation reduces to a single term where n=m: ∫−LLf(x)sin(Lmπx)dx=bmL Dividing both sides by L, we get: bm=L1∫−LLf(x)sin(Lmπx)dx Replacing m with n, we obtain the desired formula: bn=L1∫−LLf(x)sin(Lnπx)dx