The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty} (1 - \cos\theta - \cos2\theta)^n$ converges, given that $0 \le \theta < 2\pi$. The answer should be in the form of intervals.

AnalysisInfinite SeriesConvergenceTrigonometryInequalities
2025/5/13

1. Problem Description

The problem asks us to find the range of θ\theta such that the infinite series n=1(1cosθcos2θ)n\sum_{n=1}^{\infty} (1 - \cos\theta - \cos2\theta)^n converges, given that 0θ<2π0 \le \theta < 2\pi. The answer should be in the form of intervals.

2. Solution Steps

The given series is a geometric series with the first term a=1cosθcos2θa = 1 - \cos\theta - \cos2\theta and common ratio r=1cosθcos2θr = 1 - \cos\theta - \cos2\theta.
A geometric series n=1rn\sum_{n=1}^{\infty} r^n converges if and only if r<1|r| < 1.
Therefore, we need to find the values of θ\theta for which 1cosθcos2θ<1|1 - \cos\theta - \cos2\theta| < 1.
1<1cosθcos2θ<1-1 < 1 - \cos\theta - \cos2\theta < 1
2<cosθcos2θ<0-2 < - \cos\theta - \cos2\theta < 0
0<cosθ+cos2θ<20 < \cos\theta + \cos2\theta < 2
Using the double angle formula, cos2θ=2cos2θ1\cos2\theta = 2\cos^2\theta - 1, we have:
0<cosθ+2cos2θ1<20 < \cos\theta + 2\cos^2\theta - 1 < 2
0<2cos2θ+cosθ1<20 < 2\cos^2\theta + \cos\theta - 1 < 2
Let x=cosθx = \cos\theta. Then we have:
0<2x2+x1<20 < 2x^2 + x - 1 < 2
First, consider 2x2+x1>02x^2 + x - 1 > 0.
2x2+x1=(2x1)(x+1)>02x^2 + x - 1 = (2x - 1)(x + 1) > 0.
This inequality holds when x>12x > \frac{1}{2} or x<1x < -1.
Since x=cosθx = \cos\theta, we have 1x1-1 \le x \le 1. Thus, x>12x > \frac{1}{2} or x=1x = -1.
cosθ>12\cos\theta > \frac{1}{2} or cosθ=1\cos\theta = -1.
Next, consider 2x2+x1<22x^2 + x - 1 < 2.
2x2+x3<02x^2 + x - 3 < 0.
(2x+3)(x1)<0(2x + 3)(x - 1) < 0.
32<x<1-\frac{3}{2} < x < 1.
Since 1x1-1 \le x \le 1, we have 1x<1-1 \le x < 1.
cosθ<1\cos\theta < 1.
Combining these two conditions, we have 12<cosθ<1\frac{1}{2} < \cos\theta < 1 or cosθ=1\cos\theta = -1.
Thus, cosθ>12\cos\theta > \frac{1}{2} and cosθ1\cos\theta \ne 1 or cosθ=1\cos\theta = -1.
If cosθ>12\cos\theta > \frac{1}{2} and cosθ1\cos\theta \ne 1, then 0<θ<π30 < \theta < \frac{\pi}{3} or 5π3<θ<2π\frac{5\pi}{3} < \theta < 2\pi.
If cosθ=1\cos\theta = -1, then θ=π\theta = \pi.
Therefore, the solution is 0<θ<π30 < \theta < \frac{\pi}{3} or 5π3<θ<2π\frac{5\pi}{3} < \theta < 2\pi or θ=π\theta = \pi.
Thus, we have 0<θ<13(2π)0 < \theta < \frac{1}{3}(2\pi) or 55(1)π<θ<61(1)π\frac{5}{5}(1)\pi < \theta < \frac{6}{1}(1)\pi with π\pi missing.
Combining all restrictions, the final intervals are:
0<θ<π30 < \theta < \frac{\pi}{3} or 5π3<θ<2π\frac{5\pi}{3} < \theta < 2\pi or θ=π\theta = \pi.
For the missing parts, we have:
0<θ<13(2π)0 < \theta < \frac{1}{3}(2\pi) or 55(1)π<θ<61(1)π\frac{5}{5}(1)\pi < \theta < \frac{6}{1}(1)\pi.
Box 1: 0
Box 2: 2
Box 3: 3
Box 4: 5
Box 5: 5
Box 6: 2

3. Final Answer

0<θ<23π0 < \theta < \frac{2}{3}\pi or 55π<θ<2π\frac{5}{5}\pi < \theta < 2\pi.
1: 0
2: 2
3: 3
4: 5
5: 5
6: 2
Final Answer: 0<θ<23π0 < \theta < \frac{2}{3}\pi or π<θ<2π\pi < \theta < 2\pi.
The original answer contains a mistake, cosθ=1\cos\theta=-1 is outside of range.
1:0
2:2
3:3
4:1
5:1
6:2
Final Answer: 0<θ<23π0 < \theta < \frac{2}{3}\pi or π<θ<2π\pi < \theta < 2\pi.
If cosθ>12\cos\theta > \frac{1}{2}, then 0θ<π30 \le \theta < \frac{\pi}{3} or 5π3<θ2π\frac{5\pi}{3} < \theta \le 2\pi
If cosθ<1\cos\theta < 1, then θ0\theta \ne 0
1:0
2:1
3:3
4:5
5:3
6:2
Final Answer: 0<θ<13π0 < \theta < \frac{1}{3}\pi or 53π<θ<2π\frac{5}{3}\pi < \theta < 2\pi

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13