The given series is a geometric series with the first term a=1−cosθ−cos2θ and common ratio r=1−cosθ−cos2θ. A geometric series ∑n=1∞rn converges if and only if ∣r∣<1. Therefore, we need to find the values of θ for which ∣1−cosθ−cos2θ∣<1. −1<1−cosθ−cos2θ<1 −2<−cosθ−cos2θ<0 0<cosθ+cos2θ<2 Using the double angle formula, cos2θ=2cos2θ−1, we have: 0<cosθ+2cos2θ−1<2 0<2cos2θ+cosθ−1<2 Let x=cosθ. Then we have: 0<2x2+x−1<2 First, consider 2x2+x−1>0. 2x2+x−1=(2x−1)(x+1)>0. This inequality holds when x>21 or x<−1. Since x=cosθ, we have −1≤x≤1. Thus, x>21 or x=−1. cosθ>21 or cosθ=−1. Next, consider 2x2+x−1<2. 2x2+x−3<0. (2x+3)(x−1)<0. −23<x<1. Since −1≤x≤1, we have −1≤x<1. cosθ<1. Combining these two conditions, we have 21<cosθ<1 or cosθ=−1. Thus, cosθ>21 and cosθ=1 or cosθ=−1. If cosθ>21 and cosθ=1, then 0<θ<3π or 35π<θ<2π. If cosθ=−1, then θ=π. Therefore, the solution is 0<θ<3π or 35π<θ<2π or θ=π. Thus, we have 0<θ<31(2π) or 55(1)π<θ<16(1)π with π missing. Combining all restrictions, the final intervals are:
0<θ<3π or 35π<θ<2π or θ=π. For the missing parts, we have:
0<θ<31(2π) or 55(1)π<θ<16(1)π. Box 1: 0
Box 2: 2
Box 3: 3
Box 4: 5
Box 5: 5
Box 6: 2