We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x < \pi$.

AnalysisFourier SeriesIntegrationTrigonometric Functions
2025/5/13

1. Problem Description

We are asked to construct the Fourier series for the function f(x)=xf(x) = x on the interval π<x<π-\pi < x < \pi.

2. Solution Steps

The Fourier series of a function f(x)f(x) defined on the interval L<x<L-L < x < L is given by
f(x)=a02+n=1ancos(nπxL)+n=1bnsin(nπxL),f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right),
where the Fourier coefficients are given by
a0=1LLLf(x)dxa_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx
In this problem, f(x)=xf(x) = x and L=πL = \pi. Thus, we have
a0=1πππxdxa_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x \, dx
an=1πππxcos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) \, dx
bn=1πππxsin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) \, dx
Since xx is an odd function, the integral of xx from π-\pi to π\pi is

0. Similarly, $x \cos(nx)$ is an odd function, so its integral from $-\pi$ to $\pi$ is also

0. Therefore, $a_0 = 0$ and $a_n = 0$ for all $n$.

Since xsin(nx)x \sin(nx) is an even function, we have
bn=1πππxsin(nx)dx=2π0πxsin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin(nx) \, dx
We integrate by parts with u=xu = x and dv=sin(nx)dxdv = \sin(nx) \, dx. Then du=dxdu = dx and v=1ncos(nx)v = -\frac{1}{n} \cos(nx).
xsin(nx)dx=xncos(nx)+1ncos(nx)dx=xncos(nx)+1n2sin(nx)+C\int x \sin(nx) \, dx = -\frac{x}{n} \cos(nx) + \int \frac{1}{n} \cos(nx) \, dx = -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) + C
Therefore,
bn=2π[xncos(nx)+1n2sin(nx)]0π=2π(πncos(nπ)+1n2sin(nπ)0)=2ncos(nπ)=2n(1)n=2n(1)n+1b_n = \frac{2}{\pi} \left[ -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) \right]_{0}^{\pi} = \frac{2}{\pi} \left( -\frac{\pi}{n} \cos(n\pi) + \frac{1}{n^2} \sin(n\pi) - 0 \right) = -\frac{2}{n} \cos(n\pi) = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}
Thus,
f(x)=n=12n(1)n+1sin(nx)=2n=1(1)n+1nsin(nx)f(x) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin(nx) = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)
f(x)=2(sinx1sin2x2+sin3x3sin4x4+)f(x) = 2 \left( \frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \cdots \right)

3. Final Answer

f(x)=2n=1(1)n+1nsin(nx)f(x) = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13