The problem asks to evaluate the definite integral $\int_{1}^{2} (x^2 - 3x) \, dx + \int_{1}^{2} (x^2 + 4x + 1) \, dx$.

AnalysisDefinite IntegralIntegrationCalculus
2025/5/12

1. Problem Description

The problem asks to evaluate the definite integral 12(x23x)dx+12(x2+4x+1)dx\int_{1}^{2} (x^2 - 3x) \, dx + \int_{1}^{2} (x^2 + 4x + 1) \, dx.

2. Solution Steps

We can combine the integrals since they have the same limits of integration.
12(x23x)dx+12(x2+4x+1)dx=12[(x23x)+(x2+4x+1)]dx\int_{1}^{2} (x^2 - 3x) \, dx + \int_{1}^{2} (x^2 + 4x + 1) \, dx = \int_{1}^{2} [(x^2 - 3x) + (x^2 + 4x + 1)] \, dx
Simplify the expression inside the integral:
12(2x2+x+1)dx\int_{1}^{2} (2x^2 + x + 1) \, dx
Now, we find the antiderivative of 2x2+x+12x^2 + x + 1:
(2x2+x+1)dx=23x3+12x2+x+C\int (2x^2 + x + 1) \, dx = \frac{2}{3}x^3 + \frac{1}{2}x^2 + x + C
Now, we evaluate the definite integral:
12(2x2+x+1)dx=[23x3+12x2+x]12\int_{1}^{2} (2x^2 + x + 1) \, dx = \left[ \frac{2}{3}x^3 + \frac{1}{2}x^2 + x \right]_{1}^{2}
=(23(2)3+12(2)2+(2))(23(1)3+12(1)2+(1))= \left( \frac{2}{3}(2)^3 + \frac{1}{2}(2)^2 + (2) \right) - \left( \frac{2}{3}(1)^3 + \frac{1}{2}(1)^2 + (1) \right)
=(23(8)+12(4)+2)(23+12+1)= \left( \frac{2}{3}(8) + \frac{1}{2}(4) + 2 \right) - \left( \frac{2}{3} + \frac{1}{2} + 1 \right)
=(163+2+2)(23+12+1)= \left( \frac{16}{3} + 2 + 2 \right) - \left( \frac{2}{3} + \frac{1}{2} + 1 \right)
=163+423121= \frac{16}{3} + 4 - \frac{2}{3} - \frac{1}{2} - 1
=143+312= \frac{14}{3} + 3 - \frac{1}{2}
=143+6212= \frac{14}{3} + \frac{6}{2} - \frac{1}{2}
=143+52= \frac{14}{3} + \frac{5}{2}
=286+156= \frac{28}{6} + \frac{15}{6}
=436= \frac{43}{6}

3. Final Answer

436\frac{43}{6}

Related problems in "Analysis"

The image presents a set of math problems involving limits, probability, complex numbers, integrals,...

LimitsCalculusContinuityTrigonometric LimitsL'Hopital's RuleGrowth Rates
2025/5/14

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13