We can combine the integrals since they have the same limits of integration.
∫12(x2−3x)dx+∫12(x2+4x+1)dx=∫12[(x2−3x)+(x2+4x+1)]dx Simplify the expression inside the integral:
∫12(2x2+x+1)dx Now, we find the antiderivative of 2x2+x+1: ∫(2x2+x+1)dx=32x3+21x2+x+C Now, we evaluate the definite integral:
∫12(2x2+x+1)dx=[32x3+21x2+x]12 =(32(2)3+21(2)2+(2))−(32(1)3+21(1)2+(1)) =(32(8)+21(4)+2)−(32+21+1) =(316+2+2)−(32+21+1) =316+4−32−21−1 =314+3−21 =314+26−21 =314+25 =628+615