First, we find the indefinite integral of the polynomial:
∫(x2−3x+5)dx=∫x2dx−∫3xdx+∫5dx Using the power rule for integration, ∫xndx=n+1xn+1+C, we have: ∫x2dx=3x3+C1 ∫3xdx=3∫xdx=3⋅2x2+C2=23x2+C2 ∫5dx=5x+C3 Combining these, we get the indefinite integral:
∫(x2−3x+5)dx=3x3−23x2+5x+C Now, we evaluate the definite integral from 2 to 3:
∫23(x2−3x+5)dx=[3x3−23x2+5x]23 We plug in the upper limit (3) and the lower limit (2) into the expression and subtract:
=(333−23(32)+5(3))−(323−23(22)+5(2)) =(327−227+15)−(38−212+10) =(9−227+15)−(38−6+10) =(24−227)−(38+4) =24−227−38−4 =20−227−38 =20−2⋅327⋅3−3⋅28⋅2 =20−681−616 =20−697 =6120−697