The problem asks us to evaluate the definite integral of the polynomial $x^2 - 3x + 5$ from $2$ to $3$. In other words, we need to find $\int_{2}^{3} (x^2 - 3x + 5) \, dx$.

AnalysisDefinite IntegralIntegrationPolynomialCalculus
2025/5/12

1. Problem Description

The problem asks us to evaluate the definite integral of the polynomial x23x+5x^2 - 3x + 5 from 22 to 33. In other words, we need to find 23(x23x+5)dx\int_{2}^{3} (x^2 - 3x + 5) \, dx.

2. Solution Steps

First, we find the indefinite integral of the polynomial:
(x23x+5)dx=x2dx3xdx+5dx\int (x^2 - 3x + 5) \, dx = \int x^2 \, dx - \int 3x \, dx + \int 5 \, dx
Using the power rule for integration, xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, we have:
x2dx=x33+C1\int x^2 \, dx = \frac{x^3}{3} + C_1
3xdx=3xdx=3x22+C2=3x22+C2\int 3x \, dx = 3 \int x \, dx = 3 \cdot \frac{x^2}{2} + C_2 = \frac{3x^2}{2} + C_2
5dx=5x+C3\int 5 \, dx = 5x + C_3
Combining these, we get the indefinite integral:
(x23x+5)dx=x333x22+5x+C\int (x^2 - 3x + 5) \, dx = \frac{x^3}{3} - \frac{3x^2}{2} + 5x + C
Now, we evaluate the definite integral from 2 to 3:
23(x23x+5)dx=[x333x22+5x]23\int_{2}^{3} (x^2 - 3x + 5) \, dx = \left[ \frac{x^3}{3} - \frac{3x^2}{2} + 5x \right]_{2}^{3}
We plug in the upper limit (3) and the lower limit (2) into the expression and subtract:
=(3333(32)2+5(3))(2333(22)2+5(2))= \left( \frac{3^3}{3} - \frac{3(3^2)}{2} + 5(3) \right) - \left( \frac{2^3}{3} - \frac{3(2^2)}{2} + 5(2) \right)
=(273272+15)(83122+10)= \left( \frac{27}{3} - \frac{27}{2} + 15 \right) - \left( \frac{8}{3} - \frac{12}{2} + 10 \right)
=(9272+15)(836+10)= \left( 9 - \frac{27}{2} + 15 \right) - \left( \frac{8}{3} - 6 + 10 \right)
=(24272)(83+4)= \left( 24 - \frac{27}{2} \right) - \left( \frac{8}{3} + 4 \right)
=24272834= 24 - \frac{27}{2} - \frac{8}{3} - 4
=2027283= 20 - \frac{27}{2} - \frac{8}{3}
=20273238232= 20 - \frac{27 \cdot 3}{2 \cdot 3} - \frac{8 \cdot 2}{3 \cdot 2}
=20816166= 20 - \frac{81}{6} - \frac{16}{6}
=20976= 20 - \frac{97}{6}
=1206976= \frac{120}{6} - \frac{97}{6}
=236= \frac{23}{6}

3. Final Answer

The final answer is 236\frac{23}{6}.

Related problems in "Analysis"

The image presents a set of math problems involving limits, probability, complex numbers, integrals,...

LimitsCalculusContinuityTrigonometric LimitsL'Hopital's RuleGrowth Rates
2025/5/14

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13