First, we find the antiderivative of the integrand 5x2−x−4. Using the power rule for integration, ∫xndx=n+1xn+1+C, we get: ∫(5x2−x−4)dx=5∫x2dx−∫xdx−4∫1dx =53x3−2x2−4x+C=35x3−21x2−4x+C Now, we evaluate the definite integral:
∫−13(5x2−x−4)dx=[35x3−21x2−4x]−13 =(35(3)3−21(3)2−4(3))−(35(−1)3−21(−1)2−4(−1)) =(35(27)−21(9)−12)−(35(−1)−21(1)+4) =(45−29−12)−(−35−21+4) =33−29+35+21−4 =29−28+35=29−4+35=25+35 =375+35=380