We are asked to evaluate the definite integral $\int_{-1}^{3} (5x^2 - x - 4) dx$.

AnalysisDefinite IntegralIntegrationPower RuleAntiderivative
2025/5/12

1. Problem Description

We are asked to evaluate the definite integral 13(5x2x4)dx\int_{-1}^{3} (5x^2 - x - 4) dx.

2. Solution Steps

First, we find the antiderivative of the integrand 5x2x45x^2 - x - 4.
Using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, we get:
(5x2x4)dx=5x2dxxdx41dx\int (5x^2 - x - 4) dx = 5 \int x^2 dx - \int x dx - 4 \int 1 dx
=5x33x224x+C=53x312x24x+C= 5 \frac{x^3}{3} - \frac{x^2}{2} - 4x + C = \frac{5}{3}x^3 - \frac{1}{2}x^2 - 4x + C
Now, we evaluate the definite integral:
13(5x2x4)dx=[53x312x24x]13\int_{-1}^{3} (5x^2 - x - 4) dx = \left[\frac{5}{3}x^3 - \frac{1}{2}x^2 - 4x\right]_{-1}^{3}
=(53(3)312(3)24(3))(53(1)312(1)24(1))= \left(\frac{5}{3}(3)^3 - \frac{1}{2}(3)^2 - 4(3)\right) - \left(\frac{5}{3}(-1)^3 - \frac{1}{2}(-1)^2 - 4(-1)\right)
=(53(27)12(9)12)(53(1)12(1)+4)= \left(\frac{5}{3}(27) - \frac{1}{2}(9) - 12\right) - \left(\frac{5}{3}(-1) - \frac{1}{2}(1) + 4\right)
=(459212)(5312+4)= \left(45 - \frac{9}{2} - 12\right) - \left(-\frac{5}{3} - \frac{1}{2} + 4\right)
=3392+53+124= 33 - \frac{9}{2} + \frac{5}{3} + \frac{1}{2} - 4
=2982+53=294+53=25+53= 29 - \frac{8}{2} + \frac{5}{3} = 29 - 4 + \frac{5}{3} = 25 + \frac{5}{3}
=753+53=803= \frac{75}{3} + \frac{5}{3} = \frac{80}{3}

3. Final Answer

803\frac{80}{3}

Related problems in "Analysis"

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13

The image appears to present several math problems related to limits, derivatives, and inequalities....

LimitsDerivativesInequalitiesFunction AnalysisCalculus
2025/5/13

The problem seems to ask to find the derivative of the function $y = f(x) = \ln(x + \sqrt{1+x^2})$.

CalculusDifferentiationChain RuleLogarithmic FunctionsDerivatives
2025/5/13

The problem asks us to evaluate the definite integral: $A(R) = \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} ...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/5/12

Given the function $g(x) = 3x^4 - 2x^2 + 49$, we need to find the first and second derivatives, $g'(...

CalculusDerivativesFirst DerivativeSecond DerivativeSign AnalysisPolynomial Functions
2025/5/12

The problem asks us to evaluate the definite integral of the polynomial $x^2 - 3x + 5$ from $2$ to $...

Definite IntegralIntegrationPolynomialCalculus
2025/5/12

The problem asks us to evaluate the definite integral of $x^2 - 3x$ from 1 to 2, and subtract from t...

Definite IntegralIntegrationCalculus
2025/5/12

The problem asks to evaluate the definite integral $\int_{1}^{2} (x^2 - 3x) \, dx + \int_{1}^{2} (x^...

Definite IntegralIntegrationCalculus
2025/5/12

We are asked to evaluate the definite integrals given in problems 17 and 19. Problem 17 is: $\int_{-...

Definite IntegralsTrigonometric FunctionsIntegration by SubstitutionIntegration Techniques
2025/5/12