We are asked to evaluate the definite integrals given in problems 17 and 19. Problem 17 is: $\int_{-a/2}^{a/2} \cos(\frac{\pi x}{a}) dx$. Problem 19 is: $\int_{0}^{\pi} \sin^2 x dx$.

AnalysisDefinite IntegralsTrigonometric FunctionsIntegration by SubstitutionIntegration Techniques
2025/5/12

1. Problem Description

We are asked to evaluate the definite integrals given in problems 17 and
1

9. Problem 17 is: $\int_{-a/2}^{a/2} \cos(\frac{\pi x}{a}) dx$.

Problem 19 is: 0πsin2xdx\int_{0}^{\pi} \sin^2 x dx.

2. Solution Steps

Problem 17:
We evaluate the integral a/2a/2cos(πxa)dx\int_{-a/2}^{a/2} \cos(\frac{\pi x}{a}) dx. Let u=πxau = \frac{\pi x}{a}. Then du=πadxdu = \frac{\pi}{a} dx, so dx=aπdudx = \frac{a}{\pi} du. When x=a/2x = -a/2, u=πa(a2)=π2u = \frac{\pi}{a} \cdot (-\frac{a}{2}) = -\frac{\pi}{2}. When x=a/2x = a/2, u=πaa2=π2u = \frac{\pi}{a} \cdot \frac{a}{2} = \frac{\pi}{2}.
The integral becomes:
π/2π/2cos(u)aπdu=aππ/2π/2cos(u)du=aπ[sin(u)]π/2π/2=aπ[sin(π2)sin(π2)]=aπ[1(1)]=aπ2=2aπ\int_{-\pi/2}^{\pi/2} \cos(u) \frac{a}{\pi} du = \frac{a}{\pi} \int_{-\pi/2}^{\pi/2} \cos(u) du = \frac{a}{\pi} [\sin(u)]_{-\pi/2}^{\pi/2} = \frac{a}{\pi} [\sin(\frac{\pi}{2}) - \sin(-\frac{\pi}{2})] = \frac{a}{\pi} [1 - (-1)] = \frac{a}{\pi} \cdot 2 = \frac{2a}{\pi}.
Problem 19:
We evaluate the integral 0πsin2xdx\int_{0}^{\pi} \sin^2 x dx. We can use the identity sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2}.
Then 0πsin2xdx=0π1cos(2x)2dx=120π(1cos(2x))dx=12[x12sin(2x)]0π=12[(π12sin(2π))(012sin(0))]=12[(π0)(00)]=12π=π2\int_{0}^{\pi} \sin^2 x dx = \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} dx = \frac{1}{2} \int_{0}^{\pi} (1 - \cos(2x)) dx = \frac{1}{2} [x - \frac{1}{2} \sin(2x)]_{0}^{\pi} = \frac{1}{2} [(\pi - \frac{1}{2} \sin(2\pi)) - (0 - \frac{1}{2} \sin(0))] = \frac{1}{2} [(\pi - 0) - (0 - 0)] = \frac{1}{2} \pi = \frac{\pi}{2}.

3. Final Answer

For problem 17, the answer is 2aπ\frac{2a}{\pi}.
For problem 19, the answer is π2\frac{\pi}{2}.

Related problems in "Analysis"

The image presents a set of math problems involving limits, probability, complex numbers, integrals,...

LimitsCalculusContinuityTrigonometric LimitsL'Hopital's RuleGrowth Rates
2025/5/14

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13