## 1. 問題の内容算数累乗根計算2025/5/13##1. 問題の内容与えられた6つの式を計算する問題です。各式は累乗根を含む加減乗除の計算です。(1) 183×123\sqrt[3]{18} \times \sqrt[3]{12}318×312(2) 274×27÷34\sqrt[4]{27} \times \sqrt{27} \div \sqrt[4]{3}427×27÷43(3) 63×66×124\sqrt[3]{6} \times \sqrt[6]{6} \times \sqrt[4]{12}36×66×412(4) 254+3542\sqrt[4]{5} + 3\sqrt[4]{5}245+345(5) 243+813−33\sqrt[3]{24} + \sqrt[3]{81} - \sqrt[3]{3}324+381−33(6) 543+163−143\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{\frac{1}{4}}354+316−341##2. 解き方の手順(1)183×123=18×123=2163=6\sqrt[3]{18} \times \sqrt[3]{12} = \sqrt[3]{18 \times 12} = \sqrt[3]{216} = 6318×312=318×12=3216=6(2)274×27÷34=2734×27=94×27=3×33=3×3=9\sqrt[4]{27} \times \sqrt{27} \div \sqrt[4]{3} = \sqrt[4]{\frac{27}{3}} \times \sqrt{27} = \sqrt[4]{9} \times \sqrt{27} = \sqrt{3} \times 3\sqrt{3} = 3 \times 3 = 9427×27÷43=4327×27=49×27=3×33=3×3=9(3)63×66×124=613×616×(22×3)14=613+16×224×314=612×212×314=6×2×34=12×34=23×34=2×312×314=2×334=2274\sqrt[3]{6} \times \sqrt[6]{6} \times \sqrt[4]{12} = 6^{\frac{1}{3}} \times 6^{\frac{1}{6}} \times (2^2 \times 3)^{\frac{1}{4}} = 6^{\frac{1}{3} + \frac{1}{6}} \times 2^{\frac{2}{4}} \times 3^{\frac{1}{4}} = 6^{\frac{1}{2}} \times 2^{\frac{1}{2}} \times 3^{\frac{1}{4}} = \sqrt{6} \times \sqrt{2} \times \sqrt[4]{3} = \sqrt{12} \times \sqrt[4]{3} = 2\sqrt{3} \times \sqrt[4]{3} = 2 \times 3^{\frac{1}{2}} \times 3^{\frac{1}{4}} = 2 \times 3^{\frac{3}{4}} = 2 \sqrt[4]{27}36×66×412=631×661×(22×3)41=631+61×242×341=621×221×341=6×2×43=12×43=23×43=2×321×341=2×343=2427(4)254+354=(2+3)54=5542\sqrt[4]{5} + 3\sqrt[4]{5} = (2+3)\sqrt[4]{5} = 5\sqrt[4]{5}245+345=(2+3)45=545(5)243+813−33=8×33+27×33−33=233+333−33=(2+3−1)33=433\sqrt[3]{24} + \sqrt[3]{81} - \sqrt[3]{3} = \sqrt[3]{8 \times 3} + \sqrt[3]{27 \times 3} - \sqrt[3]{3} = 2\sqrt[3]{3} + 3\sqrt[3]{3} - \sqrt[3]{3} = (2+3-1)\sqrt[3]{3} = 4\sqrt[3]{3}324+381−33=38×3+327×3−33=233+333−33=(2+3−1)33=433(6)543+163−143=27×23+8×23−143=323+223−143=523−143=523−283=523−1223=9223\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{\frac{1}{4}} = \sqrt[3]{27 \times 2} + \sqrt[3]{8 \times 2} - \sqrt[3]{\frac{1}{4}} = 3\sqrt[3]{2} + 2\sqrt[3]{2} - \sqrt[3]{\frac{1}{4}} = 5\sqrt[3]{2} - \sqrt[3]{\frac{1}{4}} = 5\sqrt[3]{2} - \sqrt[3]{\frac{2}{8}} = 5\sqrt[3]{2} - \frac{1}{2}\sqrt[3]{2} = \frac{9}{2}\sqrt[3]{2}354+316−341=327×2+38×2−341=332+232−341=532−341=532−382=532−2132=2932##3. 最終的な答え(1) 6(2) 9(3) 22742\sqrt[4]{27}2427(4) 5545\sqrt[4]{5}545(5) 4334\sqrt[3]{3}433(6) 9223\frac{9}{2}\sqrt[3]{2}2932