We are asked to evaluate the double integral $\iint_R f(x, y) dA$ where $R = \{(x, y): 1 \le x \le 4, 0 \le y \le 2\}$ and $f(x, y)$ is given by different piecewise functions in problems 1, 2, and 3.

AnalysisDouble IntegralsMultivariable CalculusPiecewise Functions
2025/5/16

1. Problem Description

We are asked to evaluate the double integral Rf(x,y)dA\iint_R f(x, y) dA where R={(x,y):1x4,0y2}R = \{(x, y): 1 \le x \le 4, 0 \le y \le 2\} and f(x,y)f(x, y) is given by different piecewise functions in problems 1, 2, and
3.

2. Solution Steps

Problem 1: f(x,y)={21x<3,0y233x4,0y2f(x, y) = \begin{cases} 2 & 1 \le x < 3, 0 \le y \le 2 \\ 3 & 3 \le x \le 4, 0 \le y \le 2 \end{cases}
We can split the region RR into two subregions: R1={(x,y):1x<3,0y2}R_1 = \{(x, y): 1 \le x < 3, 0 \le y \le 2\} and R2={(x,y):3x4,0y2}R_2 = \{(x, y): 3 \le x \le 4, 0 \le y \le 2\}.
Then
Rf(x,y)dA=R12dA+R23dA \iint_R f(x, y) dA = \iint_{R_1} 2 dA + \iint_{R_2} 3 dA
R12dA=21302dydx=213[y]02dx=2132dx=413dx=4[x]13=4(31)=4(2)=8 \iint_{R_1} 2 dA = 2 \int_1^3 \int_0^2 dy dx = 2 \int_1^3 [y]_0^2 dx = 2 \int_1^3 2 dx = 4 \int_1^3 dx = 4[x]_1^3 = 4(3-1) = 4(2) = 8
R23dA=33402dydx=334[y]02dx=3342dx=634dx=6[x]34=6(43)=6(1)=6 \iint_{R_2} 3 dA = 3 \int_3^4 \int_0^2 dy dx = 3 \int_3^4 [y]_0^2 dx = 3 \int_3^4 2 dx = 6 \int_3^4 dx = 6[x]_3^4 = 6(4-3) = 6(1) = 6
Rf(x,y)dA=8+6=14 \iint_R f(x, y) dA = 8 + 6 = 14
Problem 2: f(x,y)={11x4,0y<121x4,1y2f(x, y) = \begin{cases} -1 & 1 \le x \le 4, 0 \le y < 1 \\ 2 & 1 \le x \le 4, 1 \le y \le 2 \end{cases}
We can split the region RR into two subregions: R1={(x,y):1x4,0y<1}R_1 = \{(x, y): 1 \le x \le 4, 0 \le y < 1\} and R2={(x,y):1x4,1y2}R_2 = \{(x, y): 1 \le x \le 4, 1 \le y \le 2\}.
Then
Rf(x,y)dA=R1(1)dA+R22dA \iint_R f(x, y) dA = \iint_{R_1} (-1) dA + \iint_{R_2} 2 dA
R1(1)dA=11401dydx=114[y]01dx=1141dx=14dx=[x]14=(41)=3 \iint_{R_1} (-1) dA = -1 \int_1^4 \int_0^1 dy dx = -1 \int_1^4 [y]_0^1 dx = -1 \int_1^4 1 dx = -\int_1^4 dx = -[x]_1^4 = -(4-1) = -3
R22dA=21412dydx=214[y]12dx=2141dx=2[x]14=2(41)=2(3)=6 \iint_{R_2} 2 dA = 2 \int_1^4 \int_1^2 dy dx = 2 \int_1^4 [y]_1^2 dx = 2 \int_1^4 1 dx = 2[x]_1^4 = 2(4-1) = 2(3) = 6
Rf(x,y)dA=3+6=3 \iint_R f(x, y) dA = -3 + 6 = 3
Problem 3: f(x,y)={21x<3,0y<111x<3,1y233x4,0y2f(x, y) = \begin{cases} 2 & 1 \le x < 3, 0 \le y < 1 \\ 1 & 1 \le x < 3, 1 \le y \le 2 \\ 3 & 3 \le x \le 4, 0 \le y \le 2 \end{cases}
We can split the region RR into three subregions: R1={(x,y):1x<3,0y<1}R_1 = \{(x, y): 1 \le x < 3, 0 \le y < 1\}, R2={(x,y):1x<3,1y2}R_2 = \{(x, y): 1 \le x < 3, 1 \le y \le 2\}, and R3={(x,y):3x4,0y2}R_3 = \{(x, y): 3 \le x \le 4, 0 \le y \le 2\}.
Then
Rf(x,y)dA=R12dA+R21dA+R33dA \iint_R f(x, y) dA = \iint_{R_1} 2 dA + \iint_{R_2} 1 dA + \iint_{R_3} 3 dA
R12dA=21301dydx=213[y]01dx=2131dx=2[x]13=2(31)=2(2)=4 \iint_{R_1} 2 dA = 2 \int_1^3 \int_0^1 dy dx = 2 \int_1^3 [y]_0^1 dx = 2 \int_1^3 1 dx = 2[x]_1^3 = 2(3-1) = 2(2) = 4
R21dA=1312dydx=13[y]12dx=131dx=[x]13=31=2 \iint_{R_2} 1 dA = \int_1^3 \int_1^2 dy dx = \int_1^3 [y]_1^2 dx = \int_1^3 1 dx = [x]_1^3 = 3-1 = 2
R33dA=33402dydx=334[y]02dx=3342dx=634dx=6[x]34=6(43)=6(1)=6 \iint_{R_3} 3 dA = 3 \int_3^4 \int_0^2 dy dx = 3 \int_3^4 [y]_0^2 dx = 3 \int_3^4 2 dx = 6 \int_3^4 dx = 6[x]_3^4 = 6(4-3) = 6(1) = 6
Rf(x,y)dA=4+2+6=12 \iint_R f(x, y) dA = 4 + 2 + 6 = 12

3. Final Answer

1. 14

2. 3

3. 12

Related problems in "Analysis"

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7

We are given the expression $a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}$ and we need to analyze it. Th...

LimitsL'Hopital's RuleLogarithms
2025/6/6