The problem is to evaluate the definite integrals $\int_{1}^{2} (4x^2+3x-1)dx - \int_{1}^{3} (4x^2+3x-1)dx$.

AnalysisDefinite IntegralsIntegrationPolynomialsCalculus
2025/5/17

1. Problem Description

The problem is to evaluate the definite integrals 12(4x2+3x1)dx13(4x2+3x1)dx\int_{1}^{2} (4x^2+3x-1)dx - \int_{1}^{3} (4x^2+3x-1)dx.

2. Solution Steps

First, we find the indefinite integral of the polynomial 4x2+3x14x^2 + 3x - 1. Using the power rule for integration, we have
(4x2+3x1)dx=43x3+32x2x+C\int (4x^2 + 3x - 1)dx = \frac{4}{3}x^3 + \frac{3}{2}x^2 - x + C.
Let F(x)=43x3+32x2xF(x) = \frac{4}{3}x^3 + \frac{3}{2}x^2 - x. Then,
12(4x2+3x1)dx=F(2)F(1)=(43(23)+32(22)2)(43(13)+32(12)1)=(323+62)(43+321)=323+44332+1=283+532=566+30696=776\int_{1}^{2} (4x^2+3x-1)dx = F(2) - F(1) = (\frac{4}{3}(2^3) + \frac{3}{2}(2^2) - 2) - (\frac{4}{3}(1^3) + \frac{3}{2}(1^2) - 1) = (\frac{32}{3} + 6 - 2) - (\frac{4}{3} + \frac{3}{2} - 1) = \frac{32}{3} + 4 - \frac{4}{3} - \frac{3}{2} + 1 = \frac{28}{3} + 5 - \frac{3}{2} = \frac{56}{6} + \frac{30}{6} - \frac{9}{6} = \frac{77}{6}.
13(4x2+3x1)dx=F(3)F(1)=(43(33)+32(32)3)(43(13)+32(12)1)=(43(27)+32(9)3)(43+321)=(36+2723)(43+321)=33+2724332+1=34+24243=34+1243=4643=138343=1343\int_{1}^{3} (4x^2+3x-1)dx = F(3) - F(1) = (\frac{4}{3}(3^3) + \frac{3}{2}(3^2) - 3) - (\frac{4}{3}(1^3) + \frac{3}{2}(1^2) - 1) = (\frac{4}{3}(27) + \frac{3}{2}(9) - 3) - (\frac{4}{3} + \frac{3}{2} - 1) = (36 + \frac{27}{2} - 3) - (\frac{4}{3} + \frac{3}{2} - 1) = 33 + \frac{27}{2} - \frac{4}{3} - \frac{3}{2} + 1 = 34 + \frac{24}{2} - \frac{4}{3} = 34 + 12 - \frac{4}{3} = 46 - \frac{4}{3} = \frac{138}{3} - \frac{4}{3} = \frac{134}{3}.
Therefore, 12(4x2+3x1)dx13(4x2+3x1)dx=7761343=7762686=1916\int_{1}^{2} (4x^2+3x-1)dx - \int_{1}^{3} (4x^2+3x-1)dx = \frac{77}{6} - \frac{134}{3} = \frac{77}{6} - \frac{268}{6} = \frac{-191}{6}.

3. Final Answer

-191/6

Related problems in "Analysis"

The problem asks us to solve the Cauchy problem, which is the initial value problem for the differen...

Differential EquationsCauchy ProblemInitial Value ProblemIntegration
2025/5/18

We are asked to solve the following differential equation: $\frac{y'}{\sin x} - y^3 = 0$.

Differential EquationsSeparation of VariablesIntegration
2025/5/18

The problem asks us to solve a first-order linear differential equation using Bernoulli's method. Th...

Differential EquationsBernoulli EquationFirst-Order Differential EquationsSolution Methods
2025/5/18

We are asked to solve the differential equation $xy' + y = x^3$.

Differential EquationsFirst-Order Linear Differential EquationIntegration
2025/5/18

We are given the differential equation $y'' + 3y' + 2y = \frac{x-1}{x^2}e^{-x}$ (E). 1. We need to ...

Differential EquationsSecond OrderLinear Differential EquationsParticular SolutionHomogeneous Equation
2025/5/18

The image contains several mathematics problems. We will solve problem number 8 which asks us to fin...

IntegrationPartial FractionsCalculusDefinite Integral
2025/5/18

The problem asks to prove the formula for the Fourier coefficient $b_n$ given the Fourier series exp...

Fourier SeriesOrthogonalityIntegration
2025/5/18

The problem states that a function $f(x)$ is defined on an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegration
2025/5/18

The problem states that given the function $g(x) = \frac{xe^x}{e^x + 1}$, we need to show that $g(a)...

FunctionsExponentialsRoots of EquationsInequalities
2025/5/18

We are given the limit of a rational function as $x$ approaches infinity: $\lim_{x\to\infty} \frac{8...

LimitsRational FunctionsCalculus
2025/5/18