The problem asks to prove the formula for the Fourier coefficient $b_n$ given the Fourier series expansion of a function $f(x)$ defined on the interval $(-L, L)$ with period $2L$: $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L}))$. We need to prove that $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx$.

AnalysisFourier SeriesOrthogonalityIntegration
2025/5/18

1. Problem Description

The problem asks to prove the formula for the Fourier coefficient bnb_n given the Fourier series expansion of a function f(x)f(x) defined on the interval (L,L)(-L, L) with period 2L2L:
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L})).
We need to prove that bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx.

2. Solution Steps

To find the formula for bnb_n, we multiply both sides of the Fourier series expansion by sin(mπxL)\sin(\frac{m \pi x}{L}) and integrate from L-L to LL, where mm is an integer.
LLf(x)sin(mπxL)dx=LL(a02+n=1(ancos(nπxL)+bnsin(nπxL)))sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \int_{-L}^{L} (\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L}))) \sin(\frac{m \pi x}{L}) dx
Now, we can interchange the integral and summation (under appropriate conditions which we assume hold). Then,
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+n=1LL(ancos(nπxL)+bnsin(nπxL))sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \int_{-L}^{L} \frac{a_0}{2} \sin(\frac{m \pi x}{L}) dx + \sum_{n=1}^{\infty} \int_{-L}^{L} (a_n \cos(\frac{n \pi x}{L}) + b_n \sin(\frac{n \pi x}{L})) \sin(\frac{m \pi x}{L}) dx
LLf(x)sin(mπxL)dx=a02LLsin(mπxL)odd functiondx+n=1(anLLcos(nπxL)sin(mπxL)odd functiondx+bnLLsin(nπxL)sin(mπxL)dx)\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \frac{a_0}{2} \int_{-L}^{L} \underbrace{\sin(\frac{m \pi x}{L})}_{\text{odd function}} dx + \sum_{n=1}^{\infty} (a_n \int_{-L}^{L} \underbrace{\cos(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L})}_{\text{odd function}} dx + b_n \int_{-L}^{L} \sin(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx)
Since the integral of an odd function over a symmetric interval is zero, the first two terms on the right-hand side are zero. Thus,
LLf(x)sin(mπxL)dx=n=1bnLLsin(nπxL)sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = \sum_{n=1}^{\infty} b_n \int_{-L}^{L} \sin(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx
Now, we use the orthogonality property of sine functions:
$\int_{-L}^{L} \sin(\frac{n \pi x}{L}) \sin(\frac{m \pi x}{L}) dx =
\begin{cases}
0, & \text{if } n \neq m \\
L, & \text{if } n = m
\end{cases}$
Therefore,
LLf(x)sin(mπxL)dx=bmL\int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx = b_m L
Dividing by LL, we get
bm=1LLLf(x)sin(mπxL)dxb_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{m \pi x}{L}) dx
Replacing mm with nn, we obtain the desired formula:
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx

3. Final Answer

bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n \pi x}{L}) dx

Related problems in "Analysis"

We are asked to solve the Cauchy problem for the differential equation $y'' - 3y' = 0$ with initial ...

Differential EquationsCauchy ProblemSecond-order Linear Differential EquationInitial Value ProblemCharacteristic EquationHomogeneous Equation
2025/5/19

Evaluate the double integral $\iint_S x \, dA$, where $S$ is the region between the curves $y = x$ a...

Double IntegralsRegion of IntegrationCalculusIntegration
2025/5/19

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsMultivariable CalculusIntegrationAreaTrigonometric FunctionsLogarithmic Functions
2025/5/19

We are asked to evaluate six iterated integrals.

Iterated IntegralsDouble IntegralsCalculus
2025/5/18

We are asked to evaluate several iterated integrals.

Iterated IntegralsMultivariable CalculusIntegration
2025/5/18

The problem states that we have a function $f_a(x) = x^3 - 1 - a(x-1)$ and its graph $C_a$ depending...

CalculusFunctionsDerivativesTangentsCurve sketchingPolynomials
2025/5/18

The problem asks us to solve the Cauchy problem, which is the initial value problem for the differen...

Differential EquationsCauchy ProblemInitial Value ProblemIntegration
2025/5/18

We are asked to solve the following differential equation: $\frac{y'}{\sin x} - y^3 = 0$.

Differential EquationsSeparation of VariablesIntegration
2025/5/18

The problem asks us to solve a first-order linear differential equation using Bernoulli's method. Th...

Differential EquationsBernoulli EquationFirst-Order Differential EquationsSolution Methods
2025/5/18

We are asked to solve the differential equation $xy' + y = x^3$.

Differential EquationsFirst-Order Linear Differential EquationIntegration
2025/5/18