The problem states that a function $f(x)$ is defined on an open interval $(-L, L)$ and has period $2L$. Its Fourier series expansion is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right)$. We are asked to prove that the Fourier coefficient $b_n$ is given by $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$. Note that the original text in the image has $n\pi x/4$, but the correct form is $n\pi x/L$.

AnalysisFourier SeriesOrthogonalityIntegration
2025/5/18

1. Problem Description

The problem states that a function f(x)f(x) is defined on an open interval (L,L)(-L, L) and has period 2L2L. Its Fourier series expansion is given by
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right).
We are asked to prove that the Fourier coefficient bnb_n is given by
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx. Note that the original text in the image has nπx/4n\pi x/4, but the correct form is nπx/Ln\pi x/L.

2. Solution Steps

To find the Fourier coefficient bnb_n, we can use the orthogonality properties of sine and cosine functions. Specifically, we will use the following:
LLsin(nπxL)sin(mπxL)dx={0,if nmL,if n=m\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & \text{if } n \neq m \\ L, & \text{if } n = m \end{cases}
LLcos(nπxL)sin(mπxL)dx=0\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0 for all nn and mm.
LLsin(nπxL)dx=0\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) dx = 0 for all nn.
Multiply both sides of the Fourier series expansion by sin(mπxL)\sin\left(\frac{m\pi x}{L}\right) and integrate from L-L to LL:
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+LLn=1(ancos(nπxL)+bnsin(nπxL))sin(mπxL)dx\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \sin\left(\frac{m\pi x}{L}\right) dx + \int_{-L}^{L} \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right) \sin\left(\frac{m\pi x}{L}\right) dx.
We can interchange the summation and integration (assuming uniform convergence). Thus:
LLf(x)sin(mπxL)dx=a02LLsin(mπxL)dx+n=1(anLLcos(nπxL)sin(mπxL)dx+bnLLsin(nπxL)sin(mπxL)dx)\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \frac{a_0}{2} \int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left(a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx\right).
Using the orthogonality properties mentioned above, we have:
LLf(x)sin(mπxL)dx=0+n=1(an0+bnLδnm)\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = 0 + \sum_{n=1}^{\infty} \left(a_n \cdot 0 + b_n \cdot L \delta_{nm}\right), where δnm=1\delta_{nm} = 1 if n=mn=m and 00 otherwise.
Thus:
LLf(x)sin(mπxL)dx=bmL\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = b_m L.
Dividing by LL, we get:
bm=1LLLf(x)sin(mπxL)dxb_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx.
Replacing mm with nn, we get:
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.

3. Final Answer

bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx

Related problems in "Analysis"

We are asked to solve the Cauchy problem for the differential equation $y'' - 3y' = 0$ with initial ...

Differential EquationsCauchy ProblemSecond-order Linear Differential EquationInitial Value ProblemCharacteristic EquationHomogeneous Equation
2025/5/19

Evaluate the double integral $\iint_S x \, dA$, where $S$ is the region between the curves $y = x$ a...

Double IntegralsRegion of IntegrationCalculusIntegration
2025/5/19

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsMultivariable CalculusIntegrationAreaTrigonometric FunctionsLogarithmic Functions
2025/5/19

We are asked to evaluate six iterated integrals.

Iterated IntegralsDouble IntegralsCalculus
2025/5/18

We are asked to evaluate several iterated integrals.

Iterated IntegralsMultivariable CalculusIntegration
2025/5/18

The problem states that we have a function $f_a(x) = x^3 - 1 - a(x-1)$ and its graph $C_a$ depending...

CalculusFunctionsDerivativesTangentsCurve sketchingPolynomials
2025/5/18

The problem asks us to solve the Cauchy problem, which is the initial value problem for the differen...

Differential EquationsCauchy ProblemInitial Value ProblemIntegration
2025/5/18

We are asked to solve the following differential equation: $\frac{y'}{\sin x} - y^3 = 0$.

Differential EquationsSeparation of VariablesIntegration
2025/5/18

The problem asks us to solve a first-order linear differential equation using Bernoulli's method. Th...

Differential EquationsBernoulli EquationFirst-Order Differential EquationsSolution Methods
2025/5/18

We are asked to solve the differential equation $xy' + y = x^3$.

Differential EquationsFirst-Order Linear Differential EquationIntegration
2025/5/18