To find the Fourier coefficient bn, we can use the orthogonality properties of sine and cosine functions. Specifically, we will use the following: ∫−LLsin(Lnπx)sin(Lmπx)dx={0,L,if n=mif n=m ∫−LLcos(Lnπx)sin(Lmπx)dx=0 for all n and m. ∫−LLsin(Lnπx)dx=0 for all n. Multiply both sides of the Fourier series expansion by sin(Lmπx) and integrate from −L to L: ∫−LLf(x)sin(Lmπx)dx=∫−LL2a0sin(Lmπx)dx+∫−LL∑n=1∞(ancos(Lnπx)+bnsin(Lnπx))sin(Lmπx)dx. We can interchange the summation and integration (assuming uniform convergence). Thus:
∫−LLf(x)sin(Lmπx)dx=2a0∫−LLsin(Lmπx)dx+∑n=1∞(an∫−LLcos(Lnπx)sin(Lmπx)dx+bn∫−LLsin(Lnπx)sin(Lmπx)dx). Using the orthogonality properties mentioned above, we have:
∫−LLf(x)sin(Lmπx)dx=0+∑n=1∞(an⋅0+bn⋅Lδnm), where δnm=1 if n=m and 0 otherwise. Thus:
∫−LLf(x)sin(Lmπx)dx=bmL. bm=L1∫−LLf(x)sin(Lmπx)dx. Replacing m with n, we get: bn=L1∫−LLf(x)sin(Lnπx)dx.