We need to find the indefinite integral of the function $\frac{x+4}{x^2+4}$.

AnalysisIntegrationIndefinite IntegralSubstitutionTrigonometric SubstitutionCalculus
2025/5/19

1. Problem Description

We need to find the indefinite integral of the function x+4x2+4\frac{x+4}{x^2+4}.

2. Solution Steps

We can split the integral into two parts:
x+4x2+4dx=xx2+4dx+4x2+4dx\int \frac{x+4}{x^2+4} dx = \int \frac{x}{x^2+4} dx + \int \frac{4}{x^2+4} dx
Let I1=xx2+4dxI_1 = \int \frac{x}{x^2+4} dx and I2=4x2+4dxI_2 = \int \frac{4}{x^2+4} dx.
For I1I_1, let u=x2+4u = x^2 + 4. Then du=2xdxdu = 2x dx, so xdx=12dux dx = \frac{1}{2} du.
Then I1=1u12du=121udu=12lnu+C1=12ln(x2+4)+C1I_1 = \int \frac{1}{u} \cdot \frac{1}{2} du = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C_1 = \frac{1}{2} \ln(x^2+4) + C_1. (Since x2+4x^2+4 is always positive, we can drop the absolute value).
For I2I_2, we have I2=4x2+4dx=41x2+22dxI_2 = \int \frac{4}{x^2+4} dx = 4 \int \frac{1}{x^2+2^2} dx.
Recall that 1x2+a2dx=1aarctan(xa)+C\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C.
So I2=412arctan(x2)+C2=2arctan(x2)+C2I_2 = 4 \cdot \frac{1}{2} \arctan(\frac{x}{2}) + C_2 = 2 \arctan(\frac{x}{2}) + C_2.
Therefore,
x+4x2+4dx=I1+I2=12ln(x2+4)+2arctan(x2)+C\int \frac{x+4}{x^2+4} dx = I_1 + I_2 = \frac{1}{2} \ln(x^2+4) + 2 \arctan(\frac{x}{2}) + C, where C=C1+C2C = C_1 + C_2.

3. Final Answer

12ln(x2+4)+2arctan(x2)+C\frac{1}{2} \ln(x^2+4) + 2 \arctan(\frac{x}{2}) + C

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2