$\sin \frac{7}{12} \pi$ の値を求めよ。解析学三角関数加法定理sinπ2025/3/241. 問題の内容sin712π\sin \frac{7}{12} \pisin127π の値を求めよ。2. 解き方の手順712π\frac{7}{12} \pi127π は π3+π4\frac{\pi}{3} + \frac{\pi}{4}3π+4π と表すことができる。つまり、712π=412π+312π=π3+π4\frac{7}{12} \pi = \frac{4}{12} \pi + \frac{3}{12} \pi = \frac{\pi}{3} + \frac{\pi}{4}127π=124π+123π=3π+4πしたがって、sin712π=sin(π3+π4)\sin \frac{7}{12} \pi = \sin (\frac{\pi}{3} + \frac{\pi}{4})sin127π=sin(3π+4π)三角関数の加法定理を使うと、sin(α+β)=sinαcosβ+cosαsinβ\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \betasin(α+β)=sinαcosβ+cosαsinβここで、α=π3\alpha = \frac{\pi}{3}α=3π、β=π4\beta = \frac{\pi}{4}β=4π とすると、sin(π3+π4)=sinπ3cosπ4+cosπ3sinπ4\sin (\frac{\pi}{3} + \frac{\pi}{4}) = \sin \frac{\pi}{3} \cos \frac{\pi}{4} + \cos \frac{\pi}{3} \sin \frac{\pi}{4}sin(3π+4π)=sin3πcos4π+cos3πsin4πsinπ3=32\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}sin3π=23cosπ4=22\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}cos4π=22cosπ3=12\cos \frac{\pi}{3} = \frac{1}{2}cos3π=21sinπ4=22\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}sin4π=22これらの値を代入すると、sin(π3+π4)=32⋅22+12⋅22=64+24=6+24\sin (\frac{\pi}{3} + \frac{\pi}{4}) = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}sin(3π+4π)=23⋅22+21⋅22=46+42=46+23. 最終的な答え6+24\frac{\sqrt{6} + \sqrt{2}}{4}46+2